from tools.final_answer import FinalAnswerTool as FinalAnswer from tools.classify_topic import SimpleTool as ClassifyTopic from tools.extract_news_article_content import SimpleTool as ExtractNewsArticleContent from tools.summarize_news import SimpleTool as SummarizeNews from tools.fetch_lastest_news_titles_and_urls import SimpleTool as FetchLastestNewsTitlesAndUrls import yaml import spaces import os from smolagents import CodeAgent, TransformersModel from gradio_ui import GradioUI import torch def set_seed(seed: int): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False set_seed(42) CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) fetch_lastest_news_titles_and_urls = FetchLastestNewsTitlesAndUrls() summarize_news = SummarizeNews() extract_news_article_content = ExtractNewsArticleContent() classify_topic = ClassifyTopic() final_answer = FinalAnswer() model = TransformersModel( max_new_tokens=2000, model_id='Qwen/Qwen2.5-Coder-3B-Instruct', ) with open(os.path.join(CURRENT_DIR, "prompts.yaml"), 'r') as stream: prompt_templates = yaml.safe_load(stream) agent_news_agent = CodeAgent( model=model, tools=[fetch_lastest_news_titles_and_urls, summarize_news, extract_news_article_content, classify_topic], managed_agents=[], max_steps=20, verbosity_level=2, grammar=None, planning_interval=None, name='news_agent', description="This agent is a smart news aggregator that fetches, summarizes, and classifies real-time news updates.", executor_type='local', executor_kwargs={}, max_print_outputs_length=None, prompt_templates=prompt_templates ) @spaces.GPU def run_agent(): GradioUI(agent_news_agent).launch() if __name__ == "__main__": run_agent()