File size: 16,904 Bytes
414914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934c2d5
414914f
 
 
934c2d5
414914f
 
934c2d5
 
414914f
 
 
 
934c2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414914f
 
 
 
 
934c2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32bdffb
934c2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414914f
 
 
 
 
 
 
 
 
934c2d5
414914f
 
 
934c2d5
414914f
 
 
 
 
 
 
 
 
 
934c2d5
414914f
934c2d5
 
 
 
414914f
 
 
934c2d5
414914f
 
 
934c2d5
 
414914f
 
934c2d5
 
414914f
 
 
934c2d5
414914f
 
 
 
934c2d5
414914f
 
 
 
934c2d5
 
 
 
 
 
 
 
 
 
414914f
 
 
 
 
 
 
 
 
 
 
934c2d5
 
414914f
 
 
 
 
 
 
 
 
934c2d5
 
 
 
414914f
 
 
 
 
 
 
 
 
 
 
 
934c2d5
 
414914f
 
 
 
934c2d5
 
414914f
 
934c2d5
 
 
 
414914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934c2d5
414914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934c2d5
 
414914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934c2d5
 
414914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934c2d5
 
414914f
 
 
 
 
 
 
 
 
 
934c2d5
 
414914f
 
 
 
 
 
 
 
 
 
 
934c2d5
 
 
414914f
 
 
 
934c2d5
 
 
 
 
 
414914f
934c2d5
 
 
414914f
934c2d5
 
414914f
 
934c2d5
 
 
 
 
 
 
 
 
 
 
414914f
934c2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414914f
934c2d5
 
414914f
934c2d5
 
 
 
 
 
 
 
 
 
 
 
 
414914f
934c2d5
 
 
414914f
934c2d5
414914f
 
 
 
934c2d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import shutil
import base64
from typing import Optional

import gradio as gr

from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import MultiStepAgent, PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep
from smolagents.utils import _is_package_available

CUSTOM_CSS = """
    .gradio-container {min-height: 100vh;} 
    .content-wrap {padding-bottom: 60px;}
    .full-width-btn {
        width: 100% !important;
        height: 50px !important;
        font-size: 18px !important;
        margin-top: 20px !important;
        background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important;
        color: white !important;
        border: none !important;
    }
    .full-width-btn:hover {
        background: linear-gradient(45deg, #FF5252, #3CB4AC) !important;
    }
    """


def image_to_base64(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')


def create_header():
    with gr.Row():
        with gr.Column(scale=1):
            if os.path.exists("static/aivn_logo.png"):
                logo_base64 = image_to_base64("static/aivn_logo.png")
                gr.HTML(f"""
                <img src="data:image/png;base64,{logo_base64}" 
                    alt="Logo" 
                    style="height: 120px; width: auto; margin-right: 20px; margin-bottom: 20px;">
                """)
            else:
                gr.HTML("""
                <div style="height: 120px; display: flex; align-items: center; justify-content: center; font-size: 24px; font-weight: bold;">
                    AI VIETNAM
                </div>
                """)
        with gr.Column(scale=4):
            gr.Markdown(
                """
                <div style="display: flex; justify-content: space-between; align-items: center; padding: 0 15px;">
                    <div>
                        <h1 style="margin-bottom:0;">πŸ“° News Summary Agent</h1>
                        <p style="margin-top: 0.5em; color: #666;">πŸš€ AIO2024 Module 10 πŸ€—</p>
                        <p style="margin-top: 0.5em; color: #2c3e50;">πŸ—žοΈ Real-time News Fetch & Summarization</p>
                        <p style="margin-top: 0.2em; color: #7f8c8d;">πŸ” Topic Classification & Insight Extraction</p>
                    </div>
                </div>
                """)


def create_footer():
    footer_html = """
    <style>
        .sticky-footer {
            position: fixed;
            bottom: 0;
            left: 0;
            width: 100%;
            background: white;
            padding: 10px;
            box-shadow: 0 -2px 10px rgba(0,0,0,0.1);
            z-index: 1000;
        }
        .content-wrap {
            padding-bottom: 60px; /* Footer height + extra spacing */
        }
    </style>
    
    <div class="sticky-footer">
        <div style="text-align: center; font-size: 14px;">
            Created by <a href="https://vlai.work" target="_blank" style="color: #007BFF; text-decoration: none;">VLAI</a>
            β€’ AI VIETNAM
        </div>
    </div>
    """
    return gr.HTML(footer_html)


def get_step_footnote_content(step_log: MemoryStep, step_name: str) -> str:
    """Get a footnote string for a step log with duration and token information"""
    step_footnote = f"**{step_name}**"
    if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
        token_str = f" | Input tokens:{step_log.input_token_count:,} | Output tokens: {step_log.output_token_count:,}"
        step_footnote += token_str
    if hasattr(step_log, "duration"):
        step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
        step_footnote += step_duration
    step_footnote_content = f""" < span style = "color: #bbbbc2; font-size: 12px;" > {step_footnote} < /span > """
    return step_footnote_content


def pull_messages_from_step(step_log: MemoryStep):
    """Extract ChatMessage objects from agent steps with proper nesting"""
    if not _is_package_available("gradio"):
        raise ModuleNotFoundError(
            "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
        )

    if isinstance(step_log, ActionStep):
        step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "Step"
        yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")

        if hasattr(step_log, "model_output") and step_log.model_output:
            model_output = step_log.model_output.strip()
            model_output = re.sub(r"```\s*<end_code>", "```", model_output)
            model_output = re.sub(r"<end_code>\s*```", "```", model_output)
            model_output = re.sub(
                r"```\s*\n\s*<end_code>", "```", model_output)
            model_output = model_output.strip()
            yield gr.ChatMessage(role="assistant", content=model_output)

        if hasattr(step_log, "tool_calls") and step_log.tool_calls:
            first_tool_call = step_log.tool_calls[0]
            used_code = first_tool_call.name == "python_interpreter"
            args = first_tool_call.arguments
            content = str(args.get("answer", args)) if isinstance(
                args, dict) else str(args).strip()

            if used_code:
                content = re.sub(r"```.*?\n", "", content)
                content = re.sub(r"\s*<end_code>\s*", "", content).strip()
                if not content.startswith("```python"):
                    content = f"```python\n{content}\n```"

            yield gr.ChatMessage(
                role="assistant",
                content=content,
                metadata={
                    "title": f"πŸ› οΈ Used tool {first_tool_call.name}",
                    "id": f"call_{len(step_log.tool_calls)}",
                    "status": "done",
                },
            )

        if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
            log_content = re.sub(r"^Execution logs:\s*",
                                 "", step_log.observations.strip())
            yield gr.ChatMessage(
                role="assistant",
                content=f"```bash\n{log_content}\n```",
                metadata={"title": "πŸ“ Execution Logs", "status": "done"},
            )

        if hasattr(step_log, "error") and step_log.error:
            yield gr.ChatMessage(
                role="assistant",
                content=str(step_log.error),
                metadata={"title": "πŸ’₯ Error", "status": "done"},
            )

        if getattr(step_log, "observations_images", []):
            for image in step_log.observations_images:
                path_image = AgentImage(image).to_string()
                yield gr.ChatMessage(
                    role="assistant",
                    content={"path": path_image,
                             "mime_type": f"image/{path_image.split('.')[-1]}"},
                    metadata={"title": "πŸ–ΌοΈ Output Image", "status": "done"},
                )

        yield gr.ChatMessage(role="assistant", content=get_step_footnote_content(step_log, step_number))
        yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})

    elif isinstance(step_log, PlanningStep):
        yield gr.ChatMessage(role="assistant", content="**Planning step**")
        yield gr.ChatMessage(role="assistant", content=step_log.plan)
        yield gr.ChatMessage(
            role="assistant",
            content=get_step_footnote_content(step_log, "Planning step")
        )
        yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})

    elif isinstance(step_log, FinalAnswerStep):
        final_answer = step_log.final_answer
        if isinstance(final_answer, AgentText):
            yield gr.ChatMessage(
                role="assistant",
                content=f"**Final answer:**\n{final_answer.to_string()}\n",
            )
        elif isinstance(final_answer, AgentImage):
            yield gr.ChatMessage(
                role="assistant",
                content={"path": final_answer.to_string(),
                         "mime_type": "image/png"},
            )
        elif isinstance(final_answer, AgentAudio):
            yield gr.ChatMessage(
                role="assistant",
                content={"path": final_answer.to_string(),
                         "mime_type": "audio/wav"},
            )
        else:
            yield gr.ChatMessage(
                role="assistant",
                content=f"**Final answer:** {str(final_answer)}"
            )
    else:
        raise ValueError(f"Unsupported step type: {type(step_log)}")


def stream_to_gradio(
    agent,
    task: str,
    reset_agent_memory: bool = False,
    additional_args: Optional[dict] = None,
):
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
    total_input_tokens = 0
    total_output_tokens = 0

    for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
        if getattr(agent.model, "last_input_token_count", None) is not None:
            total_input_tokens += agent.model.last_input_token_count
            total_output_tokens += agent.model.last_output_token_count
            if isinstance(step_log, (ActionStep, PlanningStep)):
                step_log.input_token_count = agent.model.last_input_token_count
                step_log.output_token_count = agent.model.last_output_token_count

        for message in pull_messages_from_step(step_log):
            yield message


class GradioUI:
    """A one-line interface to launch your agent in Gradio"""

    def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
        if not _is_package_available("gradio"):
            raise ModuleNotFoundError(
                "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
            )
        self.agent = agent
        self.file_upload_folder = file_upload_folder
        self.name = getattr(agent, "name") or "Agent interface"
        self.description = getattr(agent, "description", None)
        if self.file_upload_folder is not None and not os.path.exists(file_upload_folder):
            os.mkdir(file_upload_folder)

    def interact_with_agent(self, prompt, messages, session_state):
        import gradio as gr

        if "agent" not in session_state:
            session_state["agent"] = self.agent

        try:
            messages.append(gr.ChatMessage(role="user", content=prompt))
            yield messages

            for msg in stream_to_gradio(session_state["agent"], task=prompt, reset_agent_memory=False):
                messages.append(msg)
                yield messages

            yield messages
        except Exception as e:
            messages.append(gr.ChatMessage(
                role="assistant", content=f"Error: {str(e)}"))
            yield messages

    def upload_file(self, file, file_uploads_log, allowed_file_types=None):
        import gradio as gr

        if file is None:
            return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log

        if allowed_file_types is None:
            allowed_file_types = [".pdf", ".docx", ".txt"]

        file_ext = os.path.splitext(file.name)[1].lower()
        if file_ext not in allowed_file_types:
            return gr.Textbox("File type disallowed", visible=True), file_uploads_log

        original_name = os.path.basename(file.name)
        sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
        file_path = os.path.join(self.file_upload_folder, sanitized_name)
        shutil.copy(file.name, file_path)

        return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]

    def log_user_message(self, text_input, file_uploads_log):
        import gradio as gr

        return (
            text_input
            + (
                f"\nYou have been provided with these files: {file_uploads_log}"
                if file_uploads_log else ""
            ),
            "",
            gr.Button(interactive=False),
        )

    def launch(self, share: bool = True, **kwargs):
        self.create_app().launch(debug=True, share=share, **kwargs)

    def create_app(self):
        import gradio as gr

        with gr.Blocks(css=CUSTOM_CSS, theme="ocean", fill_height=True) as demo:
            create_header()

            session_state = gr.State({})
            stored_messages = gr.State([])
            file_uploads_log = gr.State([])

            # Main content area: Chat + Input
            with gr.Row(equal_height=True, variant="panel", elem_classes="content-wrap"):
                # Column for chat and input
                with gr.Column(scale=3):
                    # Input area moved here
                    # gr.Markdown("**Your request**")
                    text_input = gr.Textbox(
                        lines=2,
                        label="Your request",
                        placeholder="Enter your prompt here and press Shift+Enter or the button",
                    )
                    submit_btn = gr.Button(
                        "Submit", variant="primary", elem_classes="full-width-btn"
                    )

                    # Chatbot
                    chatbot = gr.Chatbot(
                        label="Agent",
                        type="messages",
                        avatar_images=(
                            None,
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                        ),
                        resizeable=True,
                        scale=1,
                    )

                # Optional: Column for file uploads
                if self.file_upload_folder is not None:
                    with gr.Column(scale=1):
                        gr.Markdown("**Upload Files**")
                        upload_file = gr.File(label="Upload a file")
                        upload_status = gr.Textbox(
                            label="Upload Status", interactive=False, visible=False
                        )
                        upload_file.change(
                            self.upload_file,
                            [upload_file, file_uploads_log],
                            [upload_status, file_uploads_log],
                        )

                # Wiring interactions
                text_input.submit(
                    self.log_user_message,
                    [text_input, file_uploads_log],
                    [stored_messages, text_input, submit_btn],
                ).then(
                    self.interact_with_agent,
                    [stored_messages, chatbot, session_state],
                    [chatbot],
                ).then(
                    lambda: (
                        gr.update(value="", interactive=True,
                                  placeholder="Enter your prompt here and press Shift+Enter or the button"),
                        gr.update(interactive=True),
                    ),
                    None,
                    [text_input, submit_btn],
                )

                submit_btn.click(
                    self.log_user_message,
                    [text_input, file_uploads_log],
                    [stored_messages, text_input, submit_btn],
                ).then(
                    self.interact_with_agent,
                    [stored_messages, chatbot, session_state],
                    [chatbot],
                ).then(
                    lambda: (
                        gr.update(value="", interactive=True,
                                  placeholder="Enter your prompt here and press Shift+Enter or the button"),
                        gr.update(interactive=True),
                    ),
                    None,
                    [text_input, submit_btn],
                )

            create_footer()

        return demo


__all__ = ["stream_to_gradio", "GradioUI"]