File size: 16,904 Bytes
414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 32bdffb 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 414914f 934c2d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import shutil
import base64
from typing import Optional
import gradio as gr
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import MultiStepAgent, PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep
from smolagents.utils import _is_package_available
CUSTOM_CSS = """
.gradio-container {min-height: 100vh;}
.content-wrap {padding-bottom: 60px;}
.full-width-btn {
width: 100% !important;
height: 50px !important;
font-size: 18px !important;
margin-top: 20px !important;
background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important;
color: white !important;
border: none !important;
}
.full-width-btn:hover {
background: linear-gradient(45deg, #FF5252, #3CB4AC) !important;
}
"""
def image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def create_header():
with gr.Row():
with gr.Column(scale=1):
if os.path.exists("static/aivn_logo.png"):
logo_base64 = image_to_base64("static/aivn_logo.png")
gr.HTML(f"""
<img src="data:image/png;base64,{logo_base64}"
alt="Logo"
style="height: 120px; width: auto; margin-right: 20px; margin-bottom: 20px;">
""")
else:
gr.HTML("""
<div style="height: 120px; display: flex; align-items: center; justify-content: center; font-size: 24px; font-weight: bold;">
AI VIETNAM
</div>
""")
with gr.Column(scale=4):
gr.Markdown(
"""
<div style="display: flex; justify-content: space-between; align-items: center; padding: 0 15px;">
<div>
<h1 style="margin-bottom:0;">π° News Summary Agent</h1>
<p style="margin-top: 0.5em; color: #666;">π AIO2024 Module 10 π€</p>
<p style="margin-top: 0.5em; color: #2c3e50;">ποΈ Real-time News Fetch & Summarization</p>
<p style="margin-top: 0.2em; color: #7f8c8d;">π Topic Classification & Insight Extraction</p>
</div>
</div>
""")
def create_footer():
footer_html = """
<style>
.sticky-footer {
position: fixed;
bottom: 0;
left: 0;
width: 100%;
background: white;
padding: 10px;
box-shadow: 0 -2px 10px rgba(0,0,0,0.1);
z-index: 1000;
}
.content-wrap {
padding-bottom: 60px; /* Footer height + extra spacing */
}
</style>
<div class="sticky-footer">
<div style="text-align: center; font-size: 14px;">
Created by <a href="https://vlai.work" target="_blank" style="color: #007BFF; text-decoration: none;">VLAI</a>
β’ AI VIETNAM
</div>
</div>
"""
return gr.HTML(footer_html)
def get_step_footnote_content(step_log: MemoryStep, step_name: str) -> str:
"""Get a footnote string for a step log with duration and token information"""
step_footnote = f"**{step_name}**"
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
token_str = f" | Input tokens:{step_log.input_token_count:,} | Output tokens: {step_log.output_token_count:,}"
step_footnote += token_str
if hasattr(step_log, "duration"):
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
step_footnote += step_duration
step_footnote_content = f""" < span style = "color: #bbbbc2; font-size: 12px;" > {step_footnote} < /span > """
return step_footnote_content
def pull_messages_from_step(step_log: MemoryStep):
"""Extract ChatMessage objects from agent steps with proper nesting"""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
if isinstance(step_log, ActionStep):
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "Step"
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
if hasattr(step_log, "model_output") and step_log.model_output:
model_output = step_log.model_output.strip()
model_output = re.sub(r"```\s*<end_code>", "```", model_output)
model_output = re.sub(r"<end_code>\s*```", "```", model_output)
model_output = re.sub(
r"```\s*\n\s*<end_code>", "```", model_output)
model_output = model_output.strip()
yield gr.ChatMessage(role="assistant", content=model_output)
if hasattr(step_log, "tool_calls") and step_log.tool_calls:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
args = first_tool_call.arguments
content = str(args.get("answer", args)) if isinstance(
args, dict) else str(args).strip()
if used_code:
content = re.sub(r"```.*?\n", "", content)
content = re.sub(r"\s*<end_code>\s*", "", content).strip()
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
yield gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"π οΈ Used tool {first_tool_call.name}",
"id": f"call_{len(step_log.tool_calls)}",
"status": "done",
},
)
if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip():
log_content = re.sub(r"^Execution logs:\s*",
"", step_log.observations.strip())
yield gr.ChatMessage(
role="assistant",
content=f"```bash\n{log_content}\n```",
metadata={"title": "π Execution Logs", "status": "done"},
)
if hasattr(step_log, "error") and step_log.error:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "π₯ Error", "status": "done"},
)
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role="assistant",
content={"path": path_image,
"mime_type": f"image/{path_image.split('.')[-1]}"},
metadata={"title": "πΌοΈ Output Image", "status": "done"},
)
yield gr.ChatMessage(role="assistant", content=get_step_footnote_content(step_log, step_number))
yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})
elif isinstance(step_log, PlanningStep):
yield gr.ChatMessage(role="assistant", content="**Planning step**")
yield gr.ChatMessage(role="assistant", content=step_log.plan)
yield gr.ChatMessage(
role="assistant",
content=get_step_footnote_content(step_log, "Planning step")
)
yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"})
elif isinstance(step_log, FinalAnswerStep):
final_answer = step_log.final_answer
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(),
"mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(),
"mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:** {str(final_answer)}"
)
else:
raise ValueError(f"Unsupported step type: {type(step_log)}")
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
total_input_tokens = 0
total_output_tokens = 0
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
if getattr(agent.model, "last_input_token_count", None) is not None:
total_input_tokens += agent.model.last_input_token_count
total_output_tokens += agent.model.last_output_token_count
if isinstance(step_log, (ActionStep, PlanningStep)):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
for message in pull_messages_from_step(step_log):
yield message
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
self.agent = agent
self.file_upload_folder = file_upload_folder
self.name = getattr(agent, "name") or "Agent interface"
self.description = getattr(agent, "description", None)
if self.file_upload_folder is not None and not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages, session_state):
import gradio as gr
if "agent" not in session_state:
session_state["agent"] = self.agent
try:
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(session_state["agent"], task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages
except Exception as e:
messages.append(gr.ChatMessage(
role="assistant", content=f"Error: {str(e)}"))
yield messages
def upload_file(self, file, file_uploads_log, allowed_file_types=None):
import gradio as gr
if file is None:
return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log
if allowed_file_types is None:
allowed_file_types = [".pdf", ".docx", ".txt"]
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
original_name = os.path.basename(file.name)
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
file_path = os.path.join(self.file_upload_folder, sanitized_name)
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
import gradio as gr
return (
text_input
+ (
f"\nYou have been provided with these files: {file_uploads_log}"
if file_uploads_log else ""
),
"",
gr.Button(interactive=False),
)
def launch(self, share: bool = True, **kwargs):
self.create_app().launch(debug=True, share=share, **kwargs)
def create_app(self):
import gradio as gr
with gr.Blocks(css=CUSTOM_CSS, theme="ocean", fill_height=True) as demo:
create_header()
session_state = gr.State({})
stored_messages = gr.State([])
file_uploads_log = gr.State([])
# Main content area: Chat + Input
with gr.Row(equal_height=True, variant="panel", elem_classes="content-wrap"):
# Column for chat and input
with gr.Column(scale=3):
# Input area moved here
# gr.Markdown("**Your request**")
text_input = gr.Textbox(
lines=2,
label="Your request",
placeholder="Enter your prompt here and press Shift+Enter or the button",
)
submit_btn = gr.Button(
"Submit", variant="primary", elem_classes="full-width-btn"
)
# Chatbot
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
)
# Optional: Column for file uploads
if self.file_upload_folder is not None:
with gr.Column(scale=1):
gr.Markdown("**Upload Files**")
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(
label="Upload Status", interactive=False, visible=False
)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
# Wiring interactions
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(
self.interact_with_agent,
[stored_messages, chatbot, session_state],
[chatbot],
).then(
lambda: (
gr.update(value="", interactive=True,
placeholder="Enter your prompt here and press Shift+Enter or the button"),
gr.update(interactive=True),
),
None,
[text_input, submit_btn],
)
submit_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(
self.interact_with_agent,
[stored_messages, chatbot, session_state],
[chatbot],
).then(
lambda: (
gr.update(value="", interactive=True,
placeholder="Enter your prompt here and press Shift+Enter or the button"),
gr.update(interactive=True),
),
None,
[text_input, submit_btn],
)
create_footer()
return demo
__all__ = ["stream_to_gradio", "GradioUI"]
|