Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import PIL | |
| import torch | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.models import AutoencoderKL, T2IAdapter, UNet2DConditionModel | |
| from diffusers.pipelines.stable_diffusion.pipeline_output import ( | |
| StableDiffusionPipelineOutput, | |
| ) | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( | |
| StableDiffusionPipeline, | |
| rescale_noise_cfg, | |
| retrieve_timesteps, | |
| ) | |
| from diffusers.pipelines.stable_diffusion.safety_checker import ( | |
| StableDiffusionSafetyChecker, | |
| ) | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import deprecate, is_torch_xla_available, logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from ..loaders import CustomAdapterMixin | |
| from ..models.attention_processor import ( | |
| DecoupledMVRowSelfAttnProcessor2_0, | |
| set_unet_2d_condition_attn_processor, | |
| ) | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, | |
| generator: Optional[torch.Generator] = None, | |
| sample_mode: str = "sample", | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| class MVAdapterI2MVSDPipeline(StableDiffusionPipeline, CustomAdapterMixin): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| requires_safety_checker: bool = False, | |
| ): | |
| super().__init__( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| requires_safety_checker=requires_safety_checker, | |
| ) | |
| self.control_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, | |
| do_convert_rgb=True, | |
| do_normalize=False, | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.prepare_latents | |
| def prepare_image_latents( | |
| self, | |
| image, | |
| timestep, | |
| batch_size, | |
| num_images_per_prompt, | |
| dtype, | |
| device, | |
| generator=None, | |
| add_noise=True, | |
| ): | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| if image.shape[1] == 4: | |
| init_latents = image | |
| else: | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| elif isinstance(generator, list): | |
| init_latents = [ | |
| retrieve_latents( | |
| self.vae.encode(image[i : i + 1]), generator=generator[i] | |
| ) | |
| for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = retrieve_latents( | |
| self.vae.encode(image), generator=generator | |
| ) | |
| init_latents = self.vae.config.scaling_factor * init_latents | |
| if ( | |
| batch_size > init_latents.shape[0] | |
| and batch_size % init_latents.shape[0] == 0 | |
| ): | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // init_latents.shape[0] | |
| init_latents = torch.cat( | |
| [init_latents] * additional_image_per_prompt, dim=0 | |
| ) | |
| elif ( | |
| batch_size > init_latents.shape[0] | |
| and batch_size % init_latents.shape[0] != 0 | |
| ): | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| init_latents = torch.cat([init_latents], dim=0) | |
| if add_noise: | |
| shape = init_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| latents = init_latents | |
| return latents | |
| def prepare_control_image( | |
| self, | |
| image, | |
| width, | |
| height, | |
| batch_size, | |
| num_images_per_prompt, | |
| device, | |
| dtype, | |
| do_classifier_free_guidance=False, | |
| num_empty_images=0, # for concat in batch like ImageDream | |
| ): | |
| assert hasattr( | |
| self, "control_image_processor" | |
| ), "control_image_processor is not initialized" | |
| image = self.control_image_processor.preprocess( | |
| image, height=height, width=width | |
| ).to(dtype=torch.float32) | |
| if num_empty_images > 0: | |
| image = torch.cat( | |
| [image, torch.zeros_like(image[:num_empty_images])], dim=0 | |
| ) | |
| image_batch_size = image.shape[0] | |
| if image_batch_size == 1: | |
| repeat_by = batch_size | |
| else: | |
| # image batch size is the same as prompt batch size | |
| repeat_by = num_images_per_prompt # always 1 for control image | |
| image = image.repeat_interleave(repeat_by, dim=0) | |
| image = image.to(device=device, dtype=dtype) | |
| if do_classifier_free_guidance: | |
| image = torch.cat([image] * 2) | |
| return image | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| sigmas: List[float] = None, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[ | |
| Union[ | |
| Callable[[int, int, Dict], None], | |
| PipelineCallback, | |
| MultiPipelineCallbacks, | |
| ] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| # NEW | |
| mv_scale: float = 1.0, | |
| # Camera or geometry condition | |
| control_image: Optional[PipelineImageInput] = None, | |
| control_conditioning_scale: Optional[float] = 1.0, | |
| control_conditioning_factor: float = 1.0, | |
| # Image condition | |
| reference_image: Optional[PipelineImageInput] = None, | |
| reference_conditioning_scale: Optional[float] = 1.0, | |
| # Optional. controlnet | |
| controlnet_image: Optional[PipelineImageInput] = None, | |
| controlnet_conditioning_scale: Optional[float] = 1.0, | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
| contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when | |
| using zero terminal SNR. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
| A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
| each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
| DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
| list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # to deal with lora scaling and other possible forward hooks | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) | |
| if self.cross_attention_kwargs is not None | |
| else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps, sigmas | |
| ) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 6.1 Add image embeds for IP-Adapter | |
| added_cond_kwargs = ( | |
| {"image_embeds": image_embeds} | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) | |
| else None | |
| ) | |
| # 6.2 Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( | |
| batch_size * num_images_per_prompt | |
| ) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| # Preprocess reference image | |
| reference_image = self.image_processor.preprocess(reference_image) | |
| reference_latents = self.prepare_image_latents( | |
| reference_image, | |
| timesteps[:1].repeat(batch_size * num_images_per_prompt), # no use | |
| batch_size, | |
| 1, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| add_noise=False, | |
| ) | |
| ref_timesteps = torch.zeros_like(timesteps[0]) | |
| ref_hidden_states = {} | |
| with torch.no_grad(): | |
| self.unet( | |
| reference_latents, | |
| ref_timesteps, | |
| encoder_hidden_states=prompt_embeds[-1:], | |
| cross_attention_kwargs={ | |
| "cache_hidden_states": ref_hidden_states, | |
| "use_mv": False, | |
| "use_ref": False, | |
| }, | |
| return_dict=False, | |
| ) | |
| ref_hidden_states = { | |
| k: v.repeat_interleave(num_images_per_prompt, dim=0) | |
| for k, v in ref_hidden_states.items() | |
| } | |
| if self.do_classifier_free_guidance: | |
| ref_hidden_states = { | |
| k: torch.cat([torch.zeros_like(v), v], dim=0) | |
| for k, v in ref_hidden_states.items() | |
| } | |
| cross_attention_kwargs = { | |
| "num_views": num_images_per_prompt, | |
| "mv_scale": mv_scale, | |
| "ref_hidden_states": {k: v.clone() for k, v in ref_hidden_states.items()}, | |
| "ref_scale": reference_conditioning_scale, | |
| **(self.cross_attention_kwargs or {}), | |
| } | |
| # Preprocess control image | |
| control_image_feature = self.prepare_control_image( | |
| image=control_image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=1, # NOTE: always 1 for control images | |
| device=device, | |
| dtype=latents.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| ) | |
| control_image_feature = control_image_feature.to( | |
| device=device, dtype=latents.dtype | |
| ) | |
| adapter_state = self.cond_encoder(control_image_feature) | |
| for i, state in enumerate(adapter_state): | |
| adapter_state[i] = state * control_conditioning_scale | |
| # Preprocess controlnet image if provided | |
| do_controlnet = controlnet_image is not None and hasattr(self, "controlnet") | |
| if do_controlnet: | |
| controlnet_image = self.prepare_control_image( | |
| image=controlnet_image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=1, # NOTE: always 1 for control images | |
| device=device, | |
| dtype=latents.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| ) | |
| controlnet_image = controlnet_image.to(device=device, dtype=latents.dtype) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) | |
| if self.do_classifier_free_guidance | |
| else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| if i < int(num_inference_steps * control_conditioning_factor): | |
| down_intrablock_additional_residuals = [ | |
| state.clone() for state in adapter_state | |
| ] | |
| else: | |
| down_intrablock_additional_residuals = None | |
| unet_add_kwargs = {} | |
| # Do controlnet if provided | |
| if do_controlnet: | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| controlnet_cond=controlnet_image, | |
| conditioning_scale=controlnet_conditioning_scale, | |
| guess_mode=False, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| ) | |
| unet_add_kwargs.update( | |
| { | |
| "down_block_additional_residuals": down_block_res_samples, | |
| "mid_block_additional_residual": mid_block_res_sample, | |
| } | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| down_intrablock_additional_residuals=down_intrablock_additional_residuals, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| **unet_add_kwargs, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg( | |
| noise_pred, | |
| noise_pred_text, | |
| guidance_rescale=self.guidance_rescale, | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs, return_dict=False | |
| )[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop( | |
| "negative_prompt_embeds", negative_prompt_embeds | |
| ) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if not output_type == "latent": | |
| image = self.vae.decode( | |
| latents / self.vae.config.scaling_factor, | |
| return_dict=False, | |
| generator=generator, | |
| )[0] | |
| image, has_nsfw_concept = self.run_safety_checker( | |
| image, device, prompt_embeds.dtype | |
| ) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess( | |
| image, output_type=output_type, do_denormalize=do_denormalize | |
| ) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput( | |
| images=image, nsfw_content_detected=has_nsfw_concept | |
| ) | |
| ### NEW: adapters ### | |
| def _init_custom_adapter( | |
| self, | |
| # Multi-view adapter | |
| num_views: int = 1, | |
| self_attn_processor: Any = DecoupledMVRowSelfAttnProcessor2_0, | |
| # Condition encoder | |
| cond_in_channels: int = 6, | |
| # For training | |
| copy_attn_weights: bool = True, | |
| zero_init_module_keys: List[str] = [], | |
| ): | |
| # Condition encoder | |
| self.cond_encoder = T2IAdapter( | |
| in_channels=cond_in_channels, | |
| channels=self.unet.config.block_out_channels, | |
| num_res_blocks=self.unet.config.layers_per_block, | |
| downscale_factor=8, | |
| ) | |
| # set custom attn processor for multi-view attention | |
| self.unet: UNet2DConditionModel | |
| set_unet_2d_condition_attn_processor( | |
| self.unet, | |
| set_self_attn_proc_func=lambda name, hs, cad, ap: self_attn_processor( | |
| query_dim=hs, | |
| inner_dim=hs, | |
| num_views=num_views, | |
| name=name, | |
| use_mv=True, | |
| use_ref=True, | |
| ), | |
| set_cross_attn_proc_func=lambda name, hs, cad, ap: self_attn_processor( | |
| query_dim=hs, | |
| inner_dim=hs, | |
| num_views=num_views, | |
| name=name, | |
| use_mv=False, | |
| use_ref=False, | |
| ), | |
| ) | |
| # copy decoupled attention weights from original unet | |
| if copy_attn_weights: | |
| state_dict = self.unet.state_dict() | |
| for key in state_dict.keys(): | |
| if "_mv" in key: | |
| compatible_key = key.replace("_mv", "").replace("processor.", "") | |
| elif "_ref" in key: | |
| compatible_key = key.replace("_ref", "").replace("processor.", "") | |
| else: | |
| compatible_key = key | |
| is_zero_init_key = any([k in key for k in zero_init_module_keys]) | |
| if is_zero_init_key: | |
| state_dict[key] = torch.zeros_like(state_dict[compatible_key]) | |
| else: | |
| state_dict[key] = state_dict[compatible_key].clone() | |
| self.unet.load_state_dict(state_dict) | |
| def _load_custom_adapter(self, state_dict): | |
| self.unet.load_state_dict(state_dict, strict=False) | |
| self.cond_encoder.load_state_dict(state_dict, strict=False) | |
| def _save_custom_adapter( | |
| self, | |
| include_keys: Optional[List[str]] = None, | |
| exclude_keys: Optional[List[str]] = None, | |
| ): | |
| def include_fn(k): | |
| is_included = False | |
| if include_keys is not None: | |
| is_included = is_included or any([key in k for key in include_keys]) | |
| if exclude_keys is not None: | |
| is_included = is_included and not any( | |
| [key in k for key in exclude_keys] | |
| ) | |
| return is_included | |
| state_dict = {k: v for k, v in self.unet.state_dict().items() if include_fn(k)} | |
| state_dict.update(self.cond_encoder.state_dict()) | |
| return state_dict | |