File size: 6,223 Bytes
eebae35
 
 
e470c5b
eebae35
e0979ff
eebae35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e470c5b
eebae35
 
 
e470c5b
 
 
eebae35
e470c5b
eebae35
e470c5b
 
 
 
 
 
2ea8fc9
eebae35
 
a43098c
 
e470c5b
eebae35
 
e470c5b
eebae35
 
 
 
e470c5b
 
eebae35
e470c5b
eebae35
 
 
 
e470c5b
eebae35
 
 
e470c5b
eebae35
 
 
e470c5b
eebae35
 
 
 
 
cea1e2e
eebae35
 
e470c5b
eebae35
e470c5b
 
 
 
 
 
 
 
 
 
eebae35
e470c5b
eebae35
e470c5b
eebae35
db8ca22
eebae35
e470c5b
 
eebae35
 
 
 
 
 
 
e470c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebae35
e470c5b
 
 
 
 
 
 
 
eebae35
e470c5b
eebae35
 
 
 
 
 
e470c5b
 
 
 
eebae35
e470c5b
 
 
eebae35
 
e470c5b
 
 
 
 
 
 
eebae35
e470c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eebae35
e470c5b
 
 
 
 
 
 
 
 
eebae35
e470c5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import random
import tempfile
from typing import Any, List

import spaces
import gradio as gr
import numpy as np
import torch
from gradio_litmodel3d import LitModel3D
from huggingface_hub import snapshot_download
from PIL import Image
import trimesh
from skimage import measure

from detailgen3d.pipelines.pipeline_detailgen3d import DetailGen3DPipeline
from detailgen3d.inference_utils import generate_dense_grid_points

# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
DTYPE = torch.bfloat16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
REPO_ID = "VAST-AI/DetailGen3D"

MARKDOWN = """
## Generating geometry details guided by reference image with [DetailGen3D](https://detailgen3d.github.io/DetailGen3D/)
1. Upload a detailed image of the frontal view and a coarse model. Then click "Run" to generate the refined result. 
2. If satisfied, download the result using the "Download GLB" button.
3. Increase CFG strength for better image consistency.
"""

EXAMPLES = [
    [
        "assets/image/100.png",
        "assets/model/100.glb",
        42,
        False
    ]
]

os.makedirs(TMP_DIR, exist_ok=True)
local_dir = "pretrained_weights/DetailGen3D"
snapshot_download(repo_id=REPO_ID, local_dir=local_dir)
pipeline = DetailGen3DPipeline.from_pretrained(local_dir).to(DEVICE, dtype=DTYPE)

def load_mesh(mesh_path, num_pc=20480):
    mesh = trimesh.load(mesh_path, force="mesh")
    center = mesh.bounding_box.centroid
    mesh.apply_translation(-center)
    scale = max(mesh.bounding_box.extents)
    mesh.apply_scale(1.9 / scale)
    
    surface, face_indices = trimesh.sample.sample_surface(mesh, 1000000)
    normal = mesh.face_normals[face_indices]
    
    rng = np.random.default_rng()
    ind = rng.choice(surface.shape[0], num_pc, replace=False)
    surface = torch.FloatTensor(surface[ind])
    normal = torch.FloatTensor(normal[ind])
    return torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda()

@torch.no_grad()
@torch.autocast(device_type=DEVICE)
def run_detailgen3d(pipeline, image, mesh, seed, num_inference_steps, guidance_scale):
    surface = load_mesh(mesh)
    batch_size = 1

    # Grid generation
    box_min = np.array([-1.005, -1.005, -1.005])
    box_max = np.array([1.005, 1.005, 1.005])
    sampled_points, grid_size, bbox_size = generate_dense_grid_points(
        bbox_min=box_min, bbox_max=box_max, octree_depth=8, indexing="ij"
    )
    sampled_points = torch.FloatTensor(sampled_points).to(DEVICE, dtype=DTYPE)
    sampled_points = sampled_points.unsqueeze(0).repeat(batch_size, 1, 1)

    # Pipeline execution
    sample = pipeline.vae.encode(surface).latent_dist.sample()
    occ = pipeline(
        image, 
        latents=sample,
        sampled_points=sampled_points,
        guidance_scale=guidance_scale,
        noise_aug_level=0,
        num_inference_steps=num_inference_steps
    ).samples[0]

    # Mesh processing
    grid_logits = occ.view(grid_size).cpu().numpy()
    vertices, faces, normals, _ = measure.marching_cubes(grid_logits, 0, method="lewiner")
    vertices = vertices / grid_size * bbox_size + box_min
    return trimesh.Trimesh(vertices.astype(np.float32), np.ascontiguousarray(faces))

@spaces.GPU(duration=180)
def run_refinement(
    image_path: str,
    mesh_path: str,
    seed: int,
    randomize_seed: bool = False,
    num_inference_steps: int = 50,
    guidance_scale: float = 4.0,
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    try:
        # Validate inputs
        if not os.path.exists(image_path):
            raise ValueError(f"Image path {image_path} not found")
        if not os.path.exists(mesh_path):
            raise ValueError(f"Mesh path {mesh_path} not found")

        image = Image.open(image_path).convert("RGB")
        scene = run_detailgen3d(
            pipeline,
            image,
            mesh_path,
            seed,
            num_inference_steps,
            guidance_scale,
        )

        # Save temporary result
        _, tmp_path = tempfile.mkstemp(suffix=".glb", prefix="detailgen3d_", dir=TMP_DIR)
        scene.export(tmp_path)
        
        return tmp_path, tmp_path, seed
    
    finally:
        torch.cuda.empty_cache()

# Demo interface
with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)

    with gr.Row():
        with gr.Column():
            with gr.Row():
                image_input = gr.Image(
                    label="Reference Image",
                    type="filepath",
                    sources=["upload", "clipboard"],
                )
                mesh_input = gr.Model3D(
                    label="Input Model",
                    camera_position=(90, 90, 3)
                )

            with gr.Accordion("Advanced Settings", open=False):
                seed_input = gr.Slider(0, MAX_SEED, value=0, label="Seed")
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                steps_input = gr.Slider(1, 100, value=50, step=1, label="Inference Steps")
                cfg_scale = gr.Slider(0.0, 20.0, value=4.0, step=0.1, label="CFG Scale")
                
            run_btn = gr.Button("Generate", variant="primary")

        with gr.Column():
            model_output = LitModel3D(
                label="Result Preview",
                height=500,
                camera_position=(90, 90, 3)
            )
            download_btn = gr.DownloadButton(
                "Download GLB",
                file_count="multiple",
                interactive=False
            )

    # Examples section
    gr.Examples(
        examples=EXAMPLES,
        inputs=[image_input, mesh_input, seed_input, randomize_seed],
        outputs=[model_output, download_btn, seed_input],
        fn=run_refinement,
        cache_examples=False,
        label="Example Inputs"
    )

    # Event handling
    run_btn.click(
        run_refinement,
        inputs=[image_input, mesh_input, seed_input, randomize_seed, steps_input, cfg_scale],
        outputs=[model_output, download_btn, seed_input]
    ).then(
        lambda: gr.DownloadButton(interactive=True),
        outputs=[download_btn]
    )

demo.launch()