Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,24 @@ from numpy.linalg import norm
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Get Hugging Face Token from Environment Variables
|
11 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
12 |
if not HF_TOKEN:
|
13 |
-
|
|
|
|
|
14 |
|
15 |
# Load the Nomic-Embed Model from Hugging Face
|
16 |
EMBEDDING_MODEL = "nomic-ai/nomic-embed-text-v1.5"
|
@@ -22,8 +35,12 @@ db_repo = "UoS-HGIG/hpo_genes"
|
|
22 |
db_path = os.path.join(os.getcwd(), db_filename)
|
23 |
|
24 |
if not os.path.exists(db_path):
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def find_best_hpo_match(finding, region, threshold):
|
29 |
query_text = f"{finding} in {region}" if region else finding
|
@@ -44,8 +61,13 @@ def find_best_hpo_match(finding, region, threshold):
|
|
44 |
best_match = {"hpo_id": hpo_id, "hpo_term": hpo_name}
|
45 |
|
46 |
conn.close()
|
47 |
-
return best_match if best_score >= threshold else None
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def get_genes_for_hpo(hpo_id):
|
51 |
conn = sqlite3.connect(db_path)
|
@@ -53,11 +75,17 @@ def get_genes_for_hpo(hpo_id):
|
|
53 |
cursor.execute("SELECT genes FROM hpo_gene WHERE hpo_id = ?", (hpo_id,))
|
54 |
result = cursor.fetchone()
|
55 |
conn.close()
|
56 |
-
return result[0].split(", ") if result else []
|
57 |
|
|
|
|
|
|
|
58 |
|
59 |
def hpo_mapper_ui(finding, region, threshold):
|
|
|
|
|
60 |
if not finding:
|
|
|
|
|
61 |
return "Please enter a pathological finding.", "", ""
|
62 |
|
63 |
match = find_best_hpo_match(finding, region, threshold)
|
@@ -68,7 +96,6 @@ def hpo_mapper_ui(finding, region, threshold):
|
|
68 |
|
69 |
return "No match found.", "", ""
|
70 |
|
71 |
-
|
72 |
demo = gr.Interface(
|
73 |
fn=hpo_mapper_ui,
|
74 |
inputs=[
|
@@ -98,4 +125,5 @@ demo = gr.Interface(
|
|
98 |
)
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
-
|
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
import os
|
9 |
+
import logging
|
10 |
+
|
11 |
+
# Create a logs directory if it does not exist
|
12 |
+
log_dir = "logs"
|
13 |
+
if not os.path.exists(log_dir):
|
14 |
+
os.makedirs(log_dir)
|
15 |
+
|
16 |
+
# Configure logging
|
17 |
+
log_file = os.path.join(log_dir, "hpo_mapper.log")
|
18 |
+
logging.basicConfig(filename=log_file, level=logging.INFO,
|
19 |
+
format="%(asctime)s - %(levelname)s - %(message)s")
|
20 |
|
21 |
# Get Hugging Face Token from Environment Variables
|
22 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
23 |
if not HF_TOKEN:
|
24 |
+
error_msg = "Missing Hugging Face API token. Please set HF_TOKEN as an environment variable in Hugging Face Secrets."
|
25 |
+
logging.error(error_msg)
|
26 |
+
raise ValueError(error_msg)
|
27 |
|
28 |
# Load the Nomic-Embed Model from Hugging Face
|
29 |
EMBEDDING_MODEL = "nomic-ai/nomic-embed-text-v1.5"
|
|
|
35 |
db_path = os.path.join(os.getcwd(), db_filename)
|
36 |
|
37 |
if not os.path.exists(db_path):
|
38 |
+
try:
|
39 |
+
db_path = hf_hub_download(repo_id=db_repo, filename=db_filename, repo_type="dataset", use_auth_token=HF_TOKEN)
|
40 |
+
logging.info("Database successfully downloaded from Hugging Face.")
|
41 |
+
except Exception as e:
|
42 |
+
logging.error(f"Failed to download database: {e}")
|
43 |
+
raise
|
44 |
|
45 |
def find_best_hpo_match(finding, region, threshold):
|
46 |
query_text = f"{finding} in {region}" if region else finding
|
|
|
61 |
best_match = {"hpo_id": hpo_id, "hpo_term": hpo_name}
|
62 |
|
63 |
conn.close()
|
|
|
64 |
|
65 |
+
if best_score >= threshold:
|
66 |
+
logging.info(f"Match found: {best_match['hpo_id']} - {best_match['hpo_term']} with score {best_score}")
|
67 |
+
return best_match
|
68 |
+
else:
|
69 |
+
logging.info(f"No suitable match found for query '{query_text}' with threshold {threshold}.")
|
70 |
+
return None
|
71 |
|
72 |
def get_genes_for_hpo(hpo_id):
|
73 |
conn = sqlite3.connect(db_path)
|
|
|
75 |
cursor.execute("SELECT genes FROM hpo_gene WHERE hpo_id = ?", (hpo_id,))
|
76 |
result = cursor.fetchone()
|
77 |
conn.close()
|
|
|
78 |
|
79 |
+
genes = result[0].split(", ") if result else []
|
80 |
+
logging.info(f"Genes retrieved for HPO ID {hpo_id}: {genes}")
|
81 |
+
return genes
|
82 |
|
83 |
def hpo_mapper_ui(finding, region, threshold):
|
84 |
+
logging.info(f"User input: Finding='{finding}', Region='{region}', Threshold={threshold}")
|
85 |
+
|
86 |
if not finding:
|
87 |
+
error_msg = "No pathological finding entered."
|
88 |
+
logging.warning(error_msg)
|
89 |
return "Please enter a pathological finding.", "", ""
|
90 |
|
91 |
match = find_best_hpo_match(finding, region, threshold)
|
|
|
96 |
|
97 |
return "No match found.", "", ""
|
98 |
|
|
|
99 |
demo = gr.Interface(
|
100 |
fn=hpo_mapper_ui,
|
101 |
inputs=[
|
|
|
125 |
)
|
126 |
|
127 |
if __name__ == "__main__":
|
128 |
+
logging.info("Launching Gradio app.")
|
129 |
+
demo.launch()
|