Spaces:
Running
Running
import gradio as gr | |
import sqlite3 | |
import json | |
import numpy as np | |
from numpy.linalg import norm | |
from huggingface_hub import hf_hub_download | |
from sentence_transformers import SentenceTransformer | |
import os | |
import subprocess | |
from huggingface_hub import login | |
# Get Hugging Face Token from Environment Variables | |
HF_TOKEN = os.getenv("HUGGINGFACE_API_KEY") | |
if not HF_TOKEN: | |
raise ValueError("Missing Hugging Face API token. Please set HF_TOKEN as an environment variable.") | |
# Set Hugging Face API key for OntoGPT | |
subprocess.run(["runoak", "set-apikey", "-e", "huggingface-key", HF_TOKEN], check=True) | |
# Define OntoGPT model | |
ONTOGPT_MODEL = "huggingface/WizardLM/WizardCoder-Python-34B-V1.0" | |
# Load the Nomic-Embed Model | |
EMBEDDING_MODEL = "nomic-ai/nomic-embed-text-v1.5" | |
embedder = SentenceTransformer(EMBEDDING_MODEL, trust_remote_code=True) | |
# Download database from Hugging Face if not exists | |
db_filename = "hpo_genes.db" | |
db_repo = "UoS-HGIG/hpo_genes" | |
db_path = os.path.join(os.getcwd(), db_filename) | |
if not os.path.exists(db_path): | |
db_path = hf_hub_download(repo_id=db_repo, filename=db_filename, repo_type="dataset", use_auth_token=HF_TOKEN) | |
def find_best_hpo_match(finding, region, threshold): | |
"""Finds the best HPO match using semantic similarity.""" | |
query_text = f"{finding} in {region}" | |
query_embedding = embedder.encode(query_text) | |
conn = sqlite3.connect(db_path) | |
cursor = conn.cursor() | |
cursor.execute("SELECT hpo_id, hpo_name, embedding FROM hpo_embeddings") | |
best_match, best_score = None, -1 | |
for hpo_id, hpo_name, embedding_str in cursor.fetchall(): | |
hpo_embedding = np.array(json.loads(embedding_str)) | |
similarity = np.dot(query_embedding, hpo_embedding) / (norm(query_embedding) * norm(hpo_embedding)) | |
if similarity > best_score: | |
best_score = similarity | |
best_match = {"hpo_id": hpo_id, "hpo_term": hpo_name} | |
conn.close() | |
return best_match if best_score > threshold else None | |
def get_genes_for_hpo(hpo_id): | |
"""Retrieves associated genes for a given HPO ID.""" | |
conn = sqlite3.connect(db_path) | |
cursor = conn.cursor() | |
cursor.execute("SELECT genes FROM hpo_gene WHERE hpo_id = ?", (hpo_id,)) | |
result = cursor.fetchone() | |
conn.close() | |
return result[0].split(", ") if result else [] | |
def get_hpo_for_finding(finding, region, threshold): | |
"""Finds the best HPO term and retrieves associated genes.""" | |
hpo_match = find_best_hpo_match(finding, region, threshold) | |
if hpo_match: | |
hpo_match["genes"] = get_genes_for_hpo(hpo_match["hpo_id"]) | |
else: | |
hpo_match = {"hpo_id": "NA", "hpo_term": "NA", "genes": []} | |
return hpo_match | |
def run_ontogpt(finding, region): | |
"""Runs OntoGPT to extract information.""" | |
input_text = f"{finding} in {region}" | |
result = subprocess.run([ | |
"ontogpt", "complete", "-m", ONTOGPT_MODEL, "-i", input_text | |
], capture_output=True, text=True) | |
return result.stdout.strip() | |
def hpo_mapper_ui(finding, region, threshold): | |
"""Function for Gradio UI to get HPO mappings and OntoGPT results.""" | |
if not finding or not region: | |
return "Please enter both finding and region.", "", "" | |
hpo_result = get_hpo_for_finding(finding, region, threshold) | |
ontogpt_output = run_ontogpt(finding, region) | |
return hpo_result["hpo_id"], hpo_result["hpo_term"], ", ".join(hpo_result["genes"]), ontogpt_output | |
# Create Gradio UI | |
demo = gr.Interface( | |
fn=hpo_mapper_ui, | |
inputs=[ | |
gr.Textbox(label="Finding"), | |
gr.Textbox(label="Region"), | |
gr.Slider(minimum=0.5, maximum=1.0, step=0.01, value=0.74, label="Threshold") | |
], | |
outputs=[ | |
gr.Textbox(label="HPO ID"), | |
gr.Textbox(label="HPO Term"), | |
gr.Textbox(label="Associated Genes"), | |
gr.Textbox(label="OntoGPT Output") | |
], | |
title="HPO Mapper with OntoGPT", | |
description=( | |
"Enter a clinical finding and anatomical region to get the best-matching HPO term and associated genes, " | |
"now enriched with OntoGPT-generated ontology-based descriptions.\n\n" | |
"### Reference:\n" | |
"**Application of Generative Artificial Intelligence to Utilise Unstructured Clinical Data for Acceleration of Inflammatory Bowel Disease Research**\n" | |
"Alex Z Kadhim, Zachary Green, Iman Nazari, Jonathan Baker, Michael George, Ashley Heinson, Matt Stammers, Christopher Kipps, R Mark Beattie, James J Ashton, Sarah Ennis\n" | |
"medRxiv 2025.03.07.25323569; [DOI: 10.1101/2025.03.07.25323569](https://doi.org/10.1101/2025.03.07.25323569)" | |
) | |
) | |
if __name__ == "__main__": | |
demo.launch() | |