import os from transformers import AutoModel, AutoTokenizer import torch import re # Load model and tokenizer model_name = "srimanth-d/GOT_CPU" # Using GOT model on CPU tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, return_tensors='pt') # Load the model model = AutoModel.from_pretrained( model_name, trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id, ) # Ensure the model is in evaluation mode and loaded on CPU device = torch.device("cpu") model = model.eval() # OCR function to extract text def extract_text_got(uploaded_file): """Use GOT-OCR2.0 model to extract text from the uploaded image.""" temp_file_path = 'temp_image.jpg' try: # Save the uploaded file temporarily with open(temp_file_path, 'wb') as temp_file: temp_file.write(uploaded_file.read()) print(f"Processing image from path: {temp_file_path}") ocr_types = ['ocr', 'format'] results = [] # Run OCR on the image for ocr_type in ocr_types: with torch.no_grad(): print(f"Running OCR with type: {ocr_type}") outputs = model.chat(tokenizer, temp_file_path, ocr_type=ocr_type) if isinstance(outputs, list) and outputs[0].strip(): return outputs[0].strip() # Return the result if successful results.append(outputs[0].strip() if outputs else "No result") # Combine results or return no text found message return results[0] if results else "No text extracted." except Exception as e: return f"Error during text extraction: {str(e)}" finally: # Clean up temporary file if os.path.exists(temp_file_path): os.remove(temp_file_path) print(f"Temporary file {temp_file_path} removed.") # Function to clean extracted text (removes extra spaces and handles special cases for Hindi and English) def clean_text(extracted_text): """ Cleans extracted text by removing extra spaces and handling language-specific issues (Hindi, English, Hinglish). """ # Normalize spaces (remove multiple spaces) text = re.sub(r'\s+', ' ', extracted_text) # Handle special cases based on Hindi, English, and Hinglish patterns text = re.sub(r'([a-zA-Z]+)\s+([a-zA-Z]+)', r'\1 \2', text) # For English text = re.sub(r'([ा-ह]+)\s+([ा-ह]+)', r'\1\2', text) # For Hindi (conjoining Devanagari characters) # Remove trailing and leading spaces return text.strip()