Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,13 +7,71 @@ client = InferenceClient("Satyam-Singh/LLaVa-Large-Language-Virtual-Assistant")
|
|
7 |
|
8 |
TITLE = """<h1 align="center">LLaVa Large Language Virtual Assistant</h1>"""
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
safety_settings = [
|
19 |
{
|
@@ -36,6 +94,14 @@ safety_settings = [
|
|
36 |
|
37 |
genai.configure(api_key=os.getenv("GOOGLE_PALM_KEY"))
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
model = genai.GenerativeModel(model_name="gemini-pro",
|
40 |
generation_config=generation_config,
|
41 |
safety_settings=safety_settings)
|
@@ -99,71 +165,7 @@ convo = model.start_chat(history=[
|
|
99 |
},
|
100 |
])
|
101 |
|
102 |
-
temperature_component = gr.Slider(
|
103 |
-
minimum=0,
|
104 |
-
maximum=1.0,
|
105 |
-
value=0.4,
|
106 |
-
step=0.05,
|
107 |
-
label="Temperature",
|
108 |
-
info=(
|
109 |
-
"Temperature controls the degree of randomness in token selection. Lower "
|
110 |
-
"temperatures are good for prompts that expect a true or correct response, "
|
111 |
-
"while higher temperatures can lead to more diverse or unexpected results. "
|
112 |
-
))
|
113 |
-
max_output_tokens_component = gr.Slider(
|
114 |
-
minimum=1,
|
115 |
-
maximum=2048,
|
116 |
-
value=1024,
|
117 |
-
step=1,
|
118 |
-
label="Token limit",
|
119 |
-
info=(
|
120 |
-
"Token limit determines the maximum amount of text output from one prompt. A "
|
121 |
-
"token is approximately four characters. The default value is 2048."
|
122 |
-
))
|
123 |
-
stop_sequences_component = gr.Textbox(
|
124 |
-
label="Add stop sequence",
|
125 |
-
value="",
|
126 |
-
type="text",
|
127 |
-
placeholder="STOP, END",
|
128 |
-
info=(
|
129 |
-
"A stop sequence is a series of characters (including spaces) that stops "
|
130 |
-
"response generation if the model encounters it. The sequence is not included "
|
131 |
-
"as part of the response. You can add up to five stop sequences."
|
132 |
-
))
|
133 |
-
top_k_component = gr.Slider(
|
134 |
-
minimum=1,
|
135 |
-
maximum=40,
|
136 |
-
value=32,
|
137 |
-
step=1,
|
138 |
-
label="Top-K",
|
139 |
-
info=(
|
140 |
-
"Top-k changes how the model selects tokens for output. A top-k of 1 means the "
|
141 |
-
"selected token is the most probable among all tokens in the model’s "
|
142 |
-
"vocabulary (also called greedy decoding), while a top-k of 3 means that the "
|
143 |
-
"next token is selected from among the 3 most probable tokens (using "
|
144 |
-
"temperature)."
|
145 |
-
))
|
146 |
-
top_p_component = gr.Slider(
|
147 |
-
minimum=0,
|
148 |
-
maximum=1,
|
149 |
-
value=1,
|
150 |
-
step=0.01,
|
151 |
-
label="Top-P",
|
152 |
-
info=(
|
153 |
-
"Top-p changes how the model selects tokens for output. Tokens are selected "
|
154 |
-
"from most probable to least until the sum of their probabilities equals the "
|
155 |
-
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
|
156 |
-
"and .1 and the top-p value is .5, then the model will select either A or B as "
|
157 |
-
"the next token (using temperature). "
|
158 |
-
))
|
159 |
|
160 |
-
additional_inputs = [
|
161 |
-
temperature_component,
|
162 |
-
max_output_tokens_component,
|
163 |
-
stop_sequences_component,
|
164 |
-
top_k_component,
|
165 |
-
top_p_component,
|
166 |
-
]
|
167 |
|
168 |
def gemini_chat(message, history):
|
169 |
response = convo.send_message(message)
|
|
|
7 |
|
8 |
TITLE = """<h1 align="center">LLaVa Large Language Virtual Assistant</h1>"""
|
9 |
|
10 |
+
temperature_component = gr.Slider(
|
11 |
+
minimum=0,
|
12 |
+
maximum=1.0,
|
13 |
+
value=0.4,
|
14 |
+
step=0.05,
|
15 |
+
label="Temperature",
|
16 |
+
info=(
|
17 |
+
"Temperature controls the degree of randomness in token selection. Lower "
|
18 |
+
"temperatures are good for prompts that expect a true or correct response, "
|
19 |
+
"while higher temperatures can lead to more diverse or unexpected results. "
|
20 |
+
))
|
21 |
+
max_output_tokens_component = gr.Slider(
|
22 |
+
minimum=1,
|
23 |
+
maximum=2048,
|
24 |
+
value=1024,
|
25 |
+
step=1,
|
26 |
+
label="Token limit",
|
27 |
+
info=(
|
28 |
+
"Token limit determines the maximum amount of text output from one prompt. A "
|
29 |
+
"token is approximately four characters. The default value is 2048."
|
30 |
+
))
|
31 |
+
stop_sequences_component = gr.Textbox(
|
32 |
+
label="Add stop sequence",
|
33 |
+
value="",
|
34 |
+
type="text",
|
35 |
+
placeholder="STOP, END",
|
36 |
+
info=(
|
37 |
+
"A stop sequence is a series of characters (including spaces) that stops "
|
38 |
+
"response generation if the model encounters it. The sequence is not included "
|
39 |
+
"as part of the response. You can add up to five stop sequences."
|
40 |
+
))
|
41 |
+
top_k_component = gr.Slider(
|
42 |
+
minimum=1,
|
43 |
+
maximum=40,
|
44 |
+
value=32,
|
45 |
+
step=1,
|
46 |
+
label="Top-K",
|
47 |
+
info=(
|
48 |
+
"Top-k changes how the model selects tokens for output. A top-k of 1 means the "
|
49 |
+
"selected token is the most probable among all tokens in the model’s "
|
50 |
+
"vocabulary (also called greedy decoding), while a top-k of 3 means that the "
|
51 |
+
"next token is selected from among the 3 most probable tokens (using "
|
52 |
+
"temperature)."
|
53 |
+
))
|
54 |
+
top_p_component = gr.Slider(
|
55 |
+
minimum=0,
|
56 |
+
maximum=1,
|
57 |
+
value=1,
|
58 |
+
step=0.01,
|
59 |
+
label="Top-P",
|
60 |
+
info=(
|
61 |
+
"Top-p changes how the model selects tokens for output. Tokens are selected "
|
62 |
+
"from most probable to least until the sum of their probabilities equals the "
|
63 |
+
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
|
64 |
+
"and .1 and the top-p value is .5, then the model will select either A or B as "
|
65 |
+
"the next token (using temperature). "
|
66 |
+
))
|
67 |
+
|
68 |
+
additional_inputs = [
|
69 |
+
temperature_component,
|
70 |
+
max_output_tokens_component,
|
71 |
+
stop_sequences_component,
|
72 |
+
top_k_component,
|
73 |
+
top_p_component,
|
74 |
+
]
|
75 |
|
76 |
safety_settings = [
|
77 |
{
|
|
|
94 |
|
95 |
genai.configure(api_key=os.getenv("GOOGLE_PALM_KEY"))
|
96 |
|
97 |
+
# Set up the model
|
98 |
+
generation_config = {
|
99 |
+
"temperature": temperature_component,#0.9,
|
100 |
+
"top_p": top_p_component,#1,
|
101 |
+
"top_k": top_k_component,#1,
|
102 |
+
"max_output_tokens": max_output_tokens_component,#4096,
|
103 |
+
}
|
104 |
+
|
105 |
model = genai.GenerativeModel(model_name="gemini-pro",
|
106 |
generation_config=generation_config,
|
107 |
safety_settings=safety_settings)
|
|
|
165 |
},
|
166 |
])
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
def gemini_chat(message, history):
|
171 |
response = convo.send_message(message)
|