File size: 8,769 Bytes
ee94686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import time

# Global variables for model and tokenizer
model = None
tokenizer = None

def load_model():
    """Load the model and tokenizer"""
    global model, tokenizer
    
    try:
        model_name = "UnarineLeo/nllb_eng_ven_terms"
        print(f"Loading model: {model_name}")
        
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
        
        print("Model loaded successfully!")
        return True
    except Exception as e:
        print(f"Error loading model: {e}")
        return False

def translate_text(text, max_length=512, num_beams=5):
    """
    Translate English text to Venda
    
    Args:
        text (str): Input English text
        max_length (int): Maximum length of translation
        num_beams (int): Number of beams for beam search
    
    Returns:
        tuple: (translated_text, status_message)
    """
    global model, tokenizer
    
    if not text.strip():
        return "", "Please enter some text to translate."
    
    if model is None or tokenizer is None:
        return "", "Model not loaded. Please wait while the model loads."
    
    try:
        # Set source language
        tokenizer.src_lang = "eng_Latn"
        
        # Tokenize input
        inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
        
        # Generate translation
        start_time = time.time()
        with torch.no_grad():
            generated_tokens = model.generate(
                **inputs,
                forced_bos_token_id=tokenizer.lang_code_to_id["ven_Latn"],
                max_length=max_length,
                num_beams=num_beams,
                early_stopping=True,
                do_sample=False
            )
        
        # Decode translation
        translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        
        end_time = time.time()
        processing_time = round(end_time - start_time, 2)
        
        status = f"βœ… Translation completed in {processing_time} seconds"
        
        return translation, status
        
    except Exception as e:
        error_msg = f"❌ Translation error: {str(e)}"
        return "", error_msg

def translate_batch(text_list):
    """
    Translate multiple lines of text
    
    Args:
        text_list (str): Multi-line text input
    
    Returns:
        tuple: (translated_text, status_message)
    """
    if not text_list.strip():
        return "", "Please enter some text to translate."
    
    lines = [line.strip() for line in text_list.split('\n') if line.strip()]
    
    if not lines:
        return "", "No valid text lines found."
    
    try:
        translations = []
        total_time = 0
        
        for i, line in enumerate(lines):
            translation, status = translate_text(line)
            if translation:
                translations.append(f"{i+1}. EN: {line}")
                translations.append(f"   VE: {translation}")
                translations.append("")
        
        if translations:
            result = "\n".join(translations)
            status_msg = f"βœ… Successfully translated {len(lines)} lines"
            return result, status_msg
        else:
            return "", "❌ No translations generated"
            
    except Exception as e:
        return "", f"❌ Batch translation error: {str(e)}"

# Load model on startup
print("Initializing model...")
model_loaded = load_model()

# Create Gradio interface
with gr.Blocks(title="English to Venda Translator", theme=gr.themes.Soft()) as demo:
    
    gr.Markdown("""
    # 🌍 English to Venda Translator
    
    This app translates English text to Venda (Tshivenda) using the NLLB model.
    Venda is a Bantu language spoken primarily in South Africa and Zimbabwe.
    
    **Model:** `UnarineLeo/nllb_eng_ven_terms`
    """)
    
    with gr.Tab("Single Translation"):
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(
                    label="English Text",
                    placeholder="Enter English text to translate...",
                    lines=4,
                    max_lines=10
                )
                
                with gr.Row():
                    max_length_slider = gr.Slider(
                        minimum=50,
                        maximum=1000,
                        value=512,
                        step=50,
                        label="Max Translation Length"
                    )
                    
                    num_beams_slider = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=5,
                        step=1,
                        label="Number of Beams (Quality vs Speed)"
                    )
                
                translate_btn = gr.Button("πŸ”„ Translate", variant="primary")
            
            with gr.Column():
                output_text = gr.Textbox(
                    label="Venda Translation",
                    lines=4,
                    max_lines=10,
                    interactive=False
                )
                
                status_text = gr.Textbox(
                    label="Status",
                    interactive=False,
                    lines=1
                )
        
        # Examples
        gr.Examples(
            examples=[
                ["Hello, how are you?"],
                ["Good morning, everyone."],
                ["Thank you for your help."],
                ["What is your name?"],
                ["I am learning Venda."],
                ["Welcome to our school."],
                ["The weather is beautiful today."],
                ["Can you help me please?"]
            ],
            inputs=[input_text],
            label="Try these examples:"
        )
    
    with gr.Tab("Batch Translation"):
        with gr.Row():
            with gr.Column():
                batch_input = gr.Textbox(
                    label="Multiple English Sentences",
                    placeholder="Enter multiple English sentences, one per line...",
                    lines=8,
                    max_lines=15
                )
                batch_translate_btn = gr.Button("πŸ”„ Translate All", variant="primary")
            
            with gr.Column():
                batch_output = gr.Textbox(
                    label="Batch Translations",
                    lines=8,
                    max_lines=15,
                    interactive=False
                )
                batch_status = gr.Textbox(
                    label="Status",
                    interactive=False,
                    lines=1
                )
    
    with gr.Tab("About"):
        gr.Markdown("""
        ## About This Translator
        
        This application uses a fine-tuned NLLB (No Language Left Behind) model specifically trained for English to Venda translation.
        
        ### Features:
        - **Single Translation**: Translate individual sentences or paragraphs
        - **Batch Translation**: Translate multiple sentences at once
        - **Adjustable Parameters**: Control translation quality and length
        - **Examples**: Try pre-loaded example sentences
        
        ### About Venda (Tshivenda):
        - Spoken by approximately 1.2 million people
        - Official language of South Africa
        - Also spoken in Zimbabwe
        - Part of the Bantu language family
        
        ### Usage Tips:
        - Keep sentences reasonably short for best results
        - The model works best with common, everyday language
        - Higher beam numbers generally produce better quality but slower translations
        
        ### Technical Details:
        - **Model**: UnarineLeo/nllb_eng_ven_terms
        - **Architecture**: NLLB (No Language Left Behind)
        - **Language Codes**: eng_Latn β†’ ven_Latn
        """)
    
    # Event handlers
    translate_btn.click(
        fn=translate_text,
        inputs=[input_text, max_length_slider, num_beams_slider],
        outputs=[output_text, status_text]
    )
    
    batch_translate_btn.click(
        fn=translate_batch,
        inputs=[batch_input],
        outputs=[batch_output, batch_status]
    )
    
    # Auto-translate on example selection
    input_text.submit(
        fn=translate_text,
        inputs=[input_text, max_length_slider, num_beams_slider],
        outputs=[output_text, status_text]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(
        share=True,
        debug=True,
        show_error=True
    )