from transformers import ( AutoModelForCausalLM, AutoTokenizer, AutoTokenizer, ) import torch d_map = {"": torch.cuda.current_device()} if torch.cuda.is_available() else None merged_model_path = "outputs/merged" # Path to the combined weights repo_name = "Financial_Analyst" # HuggingFace repo name model = AutoModelForCausalLM.from_pretrained( merged_model_path, ignore_mismatched_sizes=True, from_tf=True, trust_remote_code=True, device_map=d_map, torch_dtype=torch.float16, ).eval() tokenizer = AutoTokenizer.from_pretrained(merged_model_path) model.push_to_hub(repo_name, token=hf_token) tokenizer.push_to_hub(repo_name, token=hf_token)