from transformers import ( AutoModelForCausalLM, AutoTokenizer, AutoTokenizer, ) from peft import PeftModel, PeftConfig import torch import gradio as gr d_map = {"": torch.cuda.current_device()} if torch.cuda.is_available() else None local_model_path = "outputs/checkpoint-100" # Path to the combined weights # Loading the base Model config = PeftConfig.from_pretrained(local_model_path) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, torch_dtype=torch.float16, device_map=d_map, ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, trust_remote_code=True) def inferance(query: str, model, tokenizer, temp = 1.0, limit = 200) -> str: device = "cuda:0" prompt_template = """ Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Question: {query} ### Answer: """ prompt = prompt_template.format(query=query) encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) model_inputs = encodeds.to(device) generated_ids = model.generate(**model_inputs, max_new_tokens=int(limit), temperature=temp, do_sample=True, pad_token_id=tokenizer.eos_token_id) decoded = tokenizer.batch_decode(generated_ids) return (decoded[0]) def predict(temp, limit, text): prompt = text out = inferance(prompt, model, tokenizer, temp = 1.0, limit = 200) return out pred = gr.Interface( predict, inputs=[ gr.Slider(0.001, 10, value=0.1, label="Temperature"), gr.Slider(1, 1024, value=128, label="Token Limit"), gr.Textbox( label="Input", lines=1, value="#### Human: What's the capital of Australia?#### Assistant: ", ), ], outputs='text', ) pred.launch(share=True)