Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import unicodedata
|
4 |
+
import re
|
5 |
+
import numpy as np
|
6 |
+
from pathlib import Path
|
7 |
+
from transformers import AutoTokenizer, AutoModel # AutoModelForCausalLM μπορεί να είναι εναλλακτική για Llama
|
8 |
+
from sklearn.feature_extraction.text import HashingVectorizer
|
9 |
+
from sklearn.preprocessing import normalize as sk_normalize
|
10 |
+
import chromadb
|
11 |
+
import joblib
|
12 |
+
import pickle
|
13 |
+
import scipy.sparse
|
14 |
+
import textwrap
|
15 |
+
import os
|
16 |
+
import json # Για το διάβασμα του JSON κατά το setup
|
17 |
+
import tqdm.auto as tq # Για progress bars κατά το setup
|
18 |
+
|
19 |
+
# --------------------------- CONFIG για ChatbotVol109 -----------------------------------
|
20 |
+
# --- Ρυθμίσεις Μοντέλου και Βάσης Δεδομένων ---
|
21 |
+
MODEL_NAME = "ilsp/Llama-Krikri-8B-Base" # ΝΕΟ ΜΟΝΤΕΛΟ
|
22 |
+
PERSISTENT_STORAGE_ROOT = Path("/data") # Για Hugging Face Spaces Persistent Storage
|
23 |
+
DB_DIR_APP = PERSISTENT_STORAGE_ROOT / "chroma_db_ChatbotVol109" # ΝΕΟ PATH
|
24 |
+
COL_NAME = "collection_chatbotvol109" # ΝΕΟ ΟΝΟΜΑ ΣΥΛΛΟΓΗΣ
|
25 |
+
ASSETS_DIR_APP = PERSISTENT_STORAGE_ROOT / "assets_ChatbotVol109" # ΝΕΟ PATH ASSETS
|
26 |
+
DATA_PATH_FOR_SETUP = "./dataset14.json" # Διατηρήστε ή αλλάξτε αν το dataset είναι διαφορετικό
|
27 |
+
|
28 |
+
# --- Ρυθμίσεις για Google Cloud Storage για τα PDF links ---
|
29 |
+
GCS_BUCKET_NAME = "chatbotthesisihu" # Το δικό σας GCS Bucket Name
|
30 |
+
GCS_PUBLIC_URL_PREFIX = f"https://storage.googleapis.com/{GCS_BUCKET_NAME}/"
|
31 |
+
# -------------------------------------------------------------
|
32 |
+
|
33 |
+
# --- Παράμετροι Αναζήτησης και Μοντέλου ---
|
34 |
+
CHUNK_SIZE = 512 # Εξετάστε την αύξηση αυτού για Llama (π.χ. 1024, 2048), ανάλογα με τη μνήμη και το context window του μοντέλου
|
35 |
+
CHUNK_OVERLAP = 40
|
36 |
+
BATCH_EMB = 4 # Μειωμένο BATCH_EMB για μεγάλα μοντέλα όπως το Llama 8B
|
37 |
+
ALPHA_BASE = 0.2
|
38 |
+
ALPHA_LONGQ = 0.35
|
39 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Το device_map="auto" θα χειριστεί την τοποθέτηση του μοντέλου
|
40 |
+
|
41 |
+
print(f"Running ChatbotVol109 on main device context: {DEVICE}") # Το μοντέλο μπορεί να είναι κατανεμημένο
|
42 |
+
print(f"Using model: {MODEL_NAME}")
|
43 |
+
|
44 |
+
# === ΛΟΓΙΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΒΑΣΗΣ ΚΑΙ ASSETS (Αν δεν υπάρχουν) ===
|
45 |
+
def setup_database_and_assets():
|
46 |
+
print("Checking if database and assets need to be created for ChatbotVol109...")
|
47 |
+
run_setup = True
|
48 |
+
if DB_DIR_APP.exists() and ASSETS_DIR_APP.exists() and (ASSETS_DIR_APP / "ids.pkl").exists():
|
49 |
+
try:
|
50 |
+
client_check = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
|
51 |
+
collection_check = client_check.get_collection(name=COL_NAME)
|
52 |
+
if collection_check.count() > 0:
|
53 |
+
print("✓ Database and assets for ChatbotVol109 appear to exist and collection is populated. Skipping setup.")
|
54 |
+
run_setup = False
|
55 |
+
else:
|
56 |
+
print("Collection exists but is empty. Proceeding with setup for ChatbotVol109.")
|
57 |
+
if DB_DIR_APP.exists():
|
58 |
+
import shutil
|
59 |
+
print(f"Attempting to clean up existing empty/corrupt DB directory: {DB_DIR_APP}")
|
60 |
+
shutil.rmtree(DB_DIR_APP)
|
61 |
+
except Exception as e_check:
|
62 |
+
print(f"Database or collection check failed (Error: {e_check}). Proceeding with setup for ChatbotVol109.")
|
63 |
+
if DB_DIR_APP.exists():
|
64 |
+
import shutil
|
65 |
+
print(f"Attempting to clean up existing corrupt DB directory: {DB_DIR_APP}")
|
66 |
+
shutil.rmtree(DB_DIR_APP)
|
67 |
+
|
68 |
+
if not run_setup:
|
69 |
+
return True
|
70 |
+
|
71 |
+
print(f"!Database/Assets for ChatbotVol109 not found or incomplete. Starting setup process.")
|
72 |
+
print(f"This will take a very long time, especially on the first run with a large model!")
|
73 |
+
|
74 |
+
ASSETS_DIR_APP.mkdir(parents=True, exist_ok=True)
|
75 |
+
DB_DIR_APP.mkdir(parents=True, exist_ok=True)
|
76 |
+
|
77 |
+
def _strip_acc_setup(s:str)->str: return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch))
|
78 |
+
_STOP_SETUP = {"σχετικο","σχετικά","με","και"}
|
79 |
+
def _preprocess_setup(txt:str)->str:
|
80 |
+
txt = _strip_acc_setup(txt.lower())
|
81 |
+
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
|
82 |
+
txt = re.sub(r"\s+", " ", txt).strip()
|
83 |
+
return " ".join(w for w in txt.split() if w not in _STOP_SETUP)
|
84 |
+
|
85 |
+
def _chunk_text_setup(text, tokenizer_setup):
|
86 |
+
# Η λογική του chunking παραμένει ίδια, αλλά το CHUNK_SIZE μπορεί να προσαρμοστεί
|
87 |
+
token_ids = tokenizer_setup.encode(text, add_special_tokens=False)
|
88 |
+
if len(token_ids) <= (CHUNK_SIZE - tokenizer_setup.model_max_length + tokenizer_setup.max_len_single_sentence): # Προσαρμογή για special tokens
|
89 |
+
return [text]
|
90 |
+
# Η παρακάτω λογική μπορεί να χρειαστεί προσαρμογή ανάλογα με το πώς το Llama tokenizer χειρίζεται τα special tokens για chunking.
|
91 |
+
# Για απλότητα, διατηρούμε την υπάρχουσα λογική chunking με βάση τα token IDs.
|
92 |
+
# ids_with_special_tokens = tokenizer_setup(text, truncation=False, padding=False)["input_ids"] # Αυτό μπορεί να είναι πολύ μεγάλο
|
93 |
+
|
94 |
+
# Απλοποιημένη προσέγγιση chunking με βάση το CHUNK_SIZE για tokens
|
95 |
+
# Χρησιμοποιούμε text_target για να βρούμε tokens χωρίς special tokens για το split
|
96 |
+
text_target = tokenizer_setup.decode(tokenizer_setup.encode(text, add_special_tokens=False))
|
97 |
+
tokens = tokenizer_setup.tokenize(text_target)
|
98 |
+
|
99 |
+
chunks = []
|
100 |
+
current_chunk_tokens = []
|
101 |
+
current_length = 0
|
102 |
+
for token in tokens:
|
103 |
+
current_chunk_tokens.append(token)
|
104 |
+
current_length +=1 # Κατ' εκτίμηση, ένα token του tokenizer
|
105 |
+
if current_length >= CHUNK_SIZE - CHUNK_OVERLAP: # Αφήνουμε χώρο για overlap
|
106 |
+
# Βρες σημείο για overlap
|
107 |
+
overlap_point = max(0, len(current_chunk_tokens) - CHUNK_OVERLAP)
|
108 |
+
chunk_to_add_tokens = current_chunk_tokens[:overlap_point + (CHUNK_SIZE - CHUNK_OVERLAP)]
|
109 |
+
|
110 |
+
decoded_chunk = tokenizer_setup.convert_tokens_to_string(chunk_to_add_tokens).strip()
|
111 |
+
if decoded_chunk: chunks.append(decoded_chunk)
|
112 |
+
|
113 |
+
current_chunk_tokens = current_chunk_tokens[overlap_point:]
|
114 |
+
current_length = len(current_chunk_tokens)
|
115 |
+
|
116 |
+
if current_chunk_tokens: # Προσθήκη του τελευταίου chunk
|
117 |
+
decoded_chunk = tokenizer_setup.convert_tokens_to_string(current_chunk_tokens).strip()
|
118 |
+
if decoded_chunk: chunks.append(decoded_chunk)
|
119 |
+
|
120 |
+
return chunks if chunks else [text]
|
121 |
+
|
122 |
+
|
123 |
+
def _extract_embeddings_setup(texts, tokenizer_setup, model_setup, bs=BATCH_EMB):
|
124 |
+
out_embeddings = []
|
125 |
+
model_setup.eval() # Βεβαιωθείτε ότι το μοντέλο είναι σε eval mode
|
126 |
+
for i in tq.tqdm(range(0, len(texts), bs), desc="Embedding texts for DB setup (Llama)"):
|
127 |
+
batch_texts = texts[i:i+bs]
|
128 |
+
# Για Llama, το padding_side μπορεί να είναι σημαντικό. Συνήθως 'left' για generation, 'right' για classification/embeddings.
|
129 |
+
# Ελέγξτε την τεκμηρίωση του ilsp/Llama-Krikri-8B-Base αν έχει συγκεκριμένες απαιτήσεις.
|
130 |
+
# tokenizer_setup.padding_side = "right" # Ορισμένα Llama fine-tunes το προτιμούν
|
131 |
+
enc = tokenizer_setup(batch_texts, padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt")
|
132 |
+
# Μετακίνηση των inputs στη συσκευή όπου βρίσκεται το πρώτο layer του μοντέλου (λόγω device_map)
|
133 |
+
# Αυτό γίνεται αυτόματα από το accelerate αν τα inputs είναι στο CPU.
|
134 |
+
# enc = {k: v.to(model_setup.device) for k,v in enc.items()} # Δεν χρειάζεται συνήθως με device_map
|
135 |
+
|
136 |
+
with torch.no_grad():
|
137 |
+
model_output = model_setup(**enc, output_hidden_states=True) # Βεβαιωθείτε ότι παίρνετε hidden_states
|
138 |
+
last_hidden_state = model_output.hidden_states[-1] # Για Llama, παίρνουμε το τελευταίο hidden state
|
139 |
+
|
140 |
+
# Στρατηγική: Embedding του τελευταίου token
|
141 |
+
# Πρέπει να βρούμε το index του τελευταίου *πραγματικού* token, όχι padding token.
|
142 |
+
# Αν το tokenizer κάνει right padding (default για πολλούς Llama tokenizers):
|
143 |
+
if tokenizer_setup.padding_side == "right":
|
144 |
+
sequence_lengths = enc['attention_mask'].sum(dim=1) - 1
|
145 |
+
pooled_embeddings = last_hidden_state[torch.arange(last_hidden_state.size(0), device=last_hidden_state.device), sequence_lengths]
|
146 |
+
else: # Αν κάνει left padding, το τελευταίο token είναι πάντα στο -1 (αν δεν υπάρχει truncation που αφαιρεί το EOS)
|
147 |
+
pooled_embeddings = last_hidden_state[:, -1, :]
|
148 |
+
|
149 |
+
# Εναλλακτικά, mean pooling (πιο στιβαρό αν δεν είστε σίγουροι για το padding ή το last token)
|
150 |
+
# attention_mask = enc['attention_mask']
|
151 |
+
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
152 |
+
# sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1)
|
153 |
+
# sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
154 |
+
# pooled_embeddings = sum_embeddings / sum_mask
|
155 |
+
|
156 |
+
normalized_embeddings = torch.nn.functional.normalize(pooled_embeddings, p=2, dim=1)
|
157 |
+
out_embeddings.append(normalized_embeddings.cpu())
|
158 |
+
return torch.cat(out_embeddings).numpy()
|
159 |
+
|
160 |
+
print(f"⏳ (Setup) Loading Model ({MODEL_NAME}) and Tokenizer for ChatbotVol109...")
|
161 |
+
# Για Llama, μπορεί να χρειαστεί trust_remote_code=True
|
162 |
+
# Και device_map="auto" για μεγάλα μοντέλα
|
163 |
+
tokenizer_setup = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
164 |
+
# Βεβαιωθείτε ότι το padding token έχει οριστεί αν δεν υπάρχει.
|
165 |
+
if tokenizer_setup.pad_token is None:
|
166 |
+
tokenizer_setup.pad_token = tokenizer_setup.eos_token # Συνηθισμένο για Llama
|
167 |
+
print("Warning: pad_token was not set. Using eos_token as pad_token.")
|
168 |
+
|
169 |
+
# Φόρτωση μοντέλου με device_map="auto" για διαχείριση μνήμης.
|
170 |
+
# Εξετάστε την προσθήκη load_in_8bit=True ή load_in_4bit=True αν η μνήμη είναι πρόβλημα (απαιτεί bitsandbytes)
|
171 |
+
model_setup = AutoModel.from_pretrained(
|
172 |
+
MODEL_NAME,
|
173 |
+
trust_remote_code=True,
|
174 |
+
device_map="auto",
|
175 |
+
# torch_dtype=torch.float16 # Εξετάστε για μείωση μνήμης, αν υποστηρίζεται
|
176 |
+
)
|
177 |
+
print("✓ (Setup) Model and Tokenizer loaded for ChatbotVol109.")
|
178 |
+
|
179 |
+
print(f"⏳ (Setup) Reading & chunking JSON data from {DATA_PATH_FOR_SETUP}...")
|
180 |
+
if not Path(DATA_PATH_FOR_SETUP).exists():
|
181 |
+
print(f"!!! CRITICAL SETUP ERROR: Dataset file {DATA_PATH_FOR_SETUP} not found! Please upload it.")
|
182 |
+
return False
|
183 |
+
|
184 |
+
with open(DATA_PATH_FOR_SETUP, encoding="utf-8") as f: docs_json = json.load(f)
|
185 |
+
|
186 |
+
raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup = [], [], [], []
|
187 |
+
for d_setup in tq.tqdm(docs_json, desc="(Setup) Processing documents"):
|
188 |
+
doc_text = d_setup.get("text")
|
189 |
+
if not doc_text: continue
|
190 |
+
chunked_doc_texts = _chunk_text_setup(doc_text, tokenizer_setup)
|
191 |
+
if not chunked_doc_texts: continue
|
192 |
+
for idx, chunk in enumerate(chunked_doc_texts):
|
193 |
+
if not chunk.strip(): continue
|
194 |
+
raw_chunks_setup.append(chunk)
|
195 |
+
pre_chunks_setup.append(_preprocess_setup(chunk)) # Το preprocess παραμένει ίδιο
|
196 |
+
metas_setup.append({"id": d_setup["id"], "title": d_setup["title"], "url": d_setup["url"], "chunk_num": idx+1, "total_chunks": len(chunked_doc_texts)})
|
197 |
+
ids_list_setup.append(f'{d_setup["id"]}_c{idx+1}')
|
198 |
+
|
199 |
+
print(f" → (Setup) Total chunks created: {len(raw_chunks_setup):,}")
|
200 |
+
if not raw_chunks_setup:
|
201 |
+
print("!!! CRITICAL SETUP ERROR: No chunks were created from the dataset.")
|
202 |
+
return False
|
203 |
+
|
204 |
+
print("⏳ (Setup) Building lexical matrices (TF-IDF)...") # Αυτό παραμένει ίδιο
|
205 |
+
char_vec_setup = HashingVectorizer(analyzer="char_wb", ngram_range=(2,5), n_features=2**20, norm=None, alternate_sign=False, binary=True)
|
206 |
+
word_vec_setup = HashingVectorizer(analyzer="word", ngram_range=(1,2), n_features=2**19, norm=None, alternate_sign=False, binary=True)
|
207 |
+
X_char_setup = sk_normalize(char_vec_setup.fit_transform(pre_chunks_setup))
|
208 |
+
X_word_setup = sk_normalize(word_vec_setup.fit_transform(pre_chunks_setup))
|
209 |
+
print("✓ (Setup) Lexical matrices built.")
|
210 |
+
|
211 |
+
print(f"⏳ (Setup) Setting up ChromaDB client at {DB_DIR_APP}...")
|
212 |
+
client_setup = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
|
213 |
+
print(f" → (Setup) Creating collection: {COL_NAME}")
|
214 |
+
try:
|
215 |
+
client_setup.delete_collection(COL_NAME)
|
216 |
+
print(f" ℹ️ (Setup) Deleted existing collection '{COL_NAME}' to ensure fresh setup.")
|
217 |
+
except Exception as e_del_col:
|
218 |
+
print(f" ℹ️ (Setup) Collection '{COL_NAME}' not found or could not be deleted (normal if first run): {e_del_col}")
|
219 |
+
pass
|
220 |
+
col_setup = client_setup.get_or_create_collection(COL_NAME, metadata={"hnsw:space":"cosine"})
|
221 |
+
|
222 |
+
print("⏳ (Setup) Encoding chunks with Llama and streaming to ChromaDB...")
|
223 |
+
# Η _cls_embed_setup έχει μετονομαστεί σε _extract_embeddings_setup και προσαρμοστεί
|
224 |
+
all_embeddings = _extract_embeddings_setup(pre_chunks_setup, tokenizer_setup, model_setup, bs=BATCH_EMB)
|
225 |
+
|
226 |
+
# Προσθήκη σε batches στη ChromaDB
|
227 |
+
for start_idx in tq.tqdm(range(0, len(pre_chunks_setup), BATCH_EMB*10), desc="(Setup) Adding to ChromaDB"): # Μεγαλύτερο batch για add
|
228 |
+
end_idx = min(start_idx + BATCH_EMB*10, len(pre_chunks_setup))
|
229 |
+
batch_ids = ids_list_setup[start_idx:end_idx]
|
230 |
+
batch_metadatas = metas_setup[start_idx:end_idx]
|
231 |
+
batch_documents = pre_chunks_setup[start_idx:end_idx] # Αποθηκεύουμε τα preprocessed για συνέπεια
|
232 |
+
batch_embeddings_to_add = all_embeddings[start_idx:end_idx]
|
233 |
+
|
234 |
+
if not batch_ids: continue
|
235 |
+
col_setup.add(embeddings=batch_embeddings_to_add.tolist(), documents=batch_documents, metadatas=batch_metadatas, ids=batch_ids)
|
236 |
+
|
237 |
+
final_count = col_setup.count()
|
238 |
+
print(f"✓ (Setup) Index built and stored in ChromaDB for ChatbotVol109. Final count: {final_count}")
|
239 |
+
if final_count != len(ids_list_setup):
|
240 |
+
print(f"!!! WARNING (Setup): Mismatch after setup! Expected {len(ids_list_setup)} items, got {final_count}")
|
241 |
+
|
242 |
+
print(f"💾 (Setup) Saving assets to {ASSETS_DIR_APP}...")
|
243 |
+
joblib.dump(char_vec_setup, ASSETS_DIR_APP / "char_vectorizer.joblib")
|
244 |
+
joblib.dump(word_vec_setup, ASSETS_DIR_APP / "word_vectorizer.joblib")
|
245 |
+
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_char_sparse.npz", X_char_setup)
|
246 |
+
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_word_sparse.npz", X_word_setup)
|
247 |
+
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "wb") as f: pickle.dump(pre_chunks_setup, f)
|
248 |
+
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "wb") as f: pickle.dump(raw_chunks_setup, f)
|
249 |
+
with open(ASSETS_DIR_APP / "ids.pkl", "wb") as f: pickle.dump(ids_list_setup, f)
|
250 |
+
with open(ASSETS_DIR_APP / "metas.pkl", "wb") as f: pickle.dump(metas_setup, f)
|
251 |
+
print("✓ (Setup) Assets saved for ChatbotVol109.")
|
252 |
+
|
253 |
+
del tokenizer_setup, model_setup, docs_json, raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup, all_embeddings
|
254 |
+
del char_vec_setup, word_vec_setup, X_char_setup, X_word_setup, client_setup, col_setup
|
255 |
+
if DEVICE == "cuda": # Το device_map="auto" χειρίζεται τη μνήμη, αλλά ένα γενικό clear cache μπορεί να βοηθήσει
|
256 |
+
torch.cuda.empty_cache()
|
257 |
+
print("🎉 (Setup) Database and assets creation process for ChatbotVol109 complete!")
|
258 |
+
return True
|
259 |
+
# ==================================================================
|
260 |
+
|
261 |
+
setup_successful = setup_database_and_assets()
|
262 |
+
|
263 |
+
# ----------------------- PRE-/POST HELPERS (για την εφαρμογή Gradio) ----------------------------
|
264 |
+
def strip_acc(s: str) -> str:
|
265 |
+
return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch))
|
266 |
+
|
267 |
+
STOP = {"σχετικο", "σχετικα", "με", "και"}
|
268 |
+
|
269 |
+
def preprocess(txt: str) -> str:
|
270 |
+
txt = strip_acc(txt.lower())
|
271 |
+
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
|
272 |
+
txt = re.sub(r"\s+", " ", txt).strip()
|
273 |
+
return " ".join(w for w in txt.split() if w not in STOP)
|
274 |
+
|
275 |
+
# extract_embeddings για την εφαρμογή Gradio (ένα query κάθε φορά)
|
276 |
+
def extract_embeddings_app(texts, tokenizer_app, model_app):
|
277 |
+
model_app.eval()
|
278 |
+
# tokenizer_app.padding_side = "right" # Αν χρειάζεται
|
279 |
+
enc = tokenizer_app(texts, padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt")
|
280 |
+
# enc = {k: v.to(model_app.device) for k,v in enc.items()} # Δεν χρειάζεται με device_map
|
281 |
+
|
282 |
+
with torch.no_grad():
|
283 |
+
model_output = model_app(**enc, output_hidden_states=True)
|
284 |
+
last_hidden_state = model_output.hidden_states[-1]
|
285 |
+
|
286 |
+
if tokenizer_app.padding_side == "right":
|
287 |
+
sequence_lengths = enc['attention_mask'].sum(dim=1) - 1
|
288 |
+
pooled_embeddings = last_hidden_state[torch.arange(last_hidden_state.size(0), device=last_hidden_state.device), sequence_lengths]
|
289 |
+
else:
|
290 |
+
pooled_embeddings = last_hidden_state[:, -1, :]
|
291 |
+
|
292 |
+
normalized_embeddings = torch.nn.functional.normalize(pooled_embeddings, p=2, dim=1)
|
293 |
+
return normalized_embeddings.cpu().numpy()
|
294 |
+
|
295 |
+
# ---------------------- LOAD MODELS & DATA (Για την εφαρμογή Gradio) --------------------
|
296 |
+
tok = None
|
297 |
+
model = None
|
298 |
+
char_vec = None
|
299 |
+
word_vec = None
|
300 |
+
X_char = None
|
301 |
+
X_word = None
|
302 |
+
pre_chunks = None
|
303 |
+
raw_chunks = None
|
304 |
+
ids = None
|
305 |
+
metas = None
|
306 |
+
col = None
|
307 |
+
|
308 |
+
if setup_successful:
|
309 |
+
print(f"⏳ Loading Model ({MODEL_NAME}) and Tokenizer for Gradio App (ChatbotVol109)...")
|
310 |
+
try:
|
311 |
+
tok = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
312 |
+
if tok.pad_token is None:
|
313 |
+
tok.pad_token = tok.eos_token
|
314 |
+
# tok.padding_side = "right" # Ορίστε το padding side αν είναι απαραίτητο για συνέπεια
|
315 |
+
|
316 |
+
model = AutoModel.from_pretrained(
|
317 |
+
MODEL_NAME,
|
318 |
+
trust_remote_code=True,
|
319 |
+
device_map="auto",
|
320 |
+
# torch_dtype=torch.float16
|
321 |
+
)
|
322 |
+
print("✓ Model and tokenizer loaded for Gradio App (ChatbotVol109).")
|
323 |
+
except Exception as e:
|
324 |
+
print(f"CRITICAL ERROR loading model/tokenizer for Gradio App (ChatbotVol109): {e}")
|
325 |
+
setup_successful = False
|
326 |
+
|
327 |
+
if setup_successful:
|
328 |
+
print(f"⏳ Loading TF-IDF/Assets from {ASSETS_DIR_APP} for Gradio App...")
|
329 |
+
try:
|
330 |
+
char_vec = joblib.load(ASSETS_DIR_APP / "char_vectorizer.joblib")
|
331 |
+
word_vec = joblib.load(ASSETS_DIR_APP / "word_vectorizer.joblib")
|
332 |
+
X_char = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_char_sparse.npz")
|
333 |
+
X_word = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_word_sparse.npz")
|
334 |
+
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "rb") as f: pre_chunks = pickle.load(f)
|
335 |
+
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "rb") as f: raw_chunks = pickle.load(f)
|
336 |
+
with open(ASSETS_DIR_APP / "ids.pkl", "rb") as f: ids = pickle.load(f)
|
337 |
+
with open(ASSETS_DIR_APP / "metas.pkl", "rb") as f: metas = pickle.load(f)
|
338 |
+
print("✓ TF-IDF/Assets loaded for Gradio App (ChatbotVol109).")
|
339 |
+
except Exception as e:
|
340 |
+
print(f"CRITICAL ERROR loading TF-IDF/Assets for Gradio App (ChatbotVol109): {e}")
|
341 |
+
setup_successful = False
|
342 |
+
|
343 |
+
if setup_successful:
|
344 |
+
print(f"⏳ Connecting to ChromaDB at {DB_DIR_APP} for Gradio App...")
|
345 |
+
try:
|
346 |
+
client = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
|
347 |
+
col = client.get_collection(COL_NAME)
|
348 |
+
print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}")
|
349 |
+
if col.count() == 0 and (ids and len(ids) > 0):
|
350 |
+
print(f"!!! CRITICAL WARNING: ChromaDB collection '{COL_NAME}' is EMPTY but assets were loaded. Setup might have failed.")
|
351 |
+
setup_successful = False
|
352 |
+
except Exception as e:
|
353 |
+
print(f"CRITICAL ERROR connecting to ChromaDB or getting collection for Gradio App (ChatbotVol109): {e}")
|
354 |
+
setup_successful = False
|
355 |
+
else:
|
356 |
+
print("!!! Setup process for ChatbotVol109 failed or was skipped. Gradio app will not function correctly. !!!")
|
357 |
+
|
358 |
+
# ---------------------- HYBRID SEARCH (Κύρια Λογική) ---
|
359 |
+
def hybrid_search_gradio(query, k=5):
|
360 |
+
if not setup_successful or not ids or not col or not model or not tok:
|
361 |
+
return "Σφάλμα: Η εφαρμογή δεν αρχικοποιήθηκε σωστά (ChatbotVol109). Ελέγξτε τα logs."
|
362 |
+
if not query.strip():
|
363 |
+
return "Παρακαλώ εισάγετε μια ερώτηση."
|
364 |
+
|
365 |
+
q_pre = preprocess(query)
|
366 |
+
words = q_pre.split()
|
367 |
+
alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE # Το alpha μπορεί να χρειαστεί re-tuning
|
368 |
+
|
369 |
+
# Σημασιολογική Αναζήτηση με το νέο μοντέλο
|
370 |
+
q_emb_np = extract_embeddings_app([q_pre], tok, model) # Χρήση της νέας συνάρτησης
|
371 |
+
q_emb_list = q_emb_np.tolist()
|
372 |
+
|
373 |
+
try:
|
374 |
+
sem_results = col.query(query_embeddings=q_emb_list, n_results=min(k * 30, len(ids)), include=["distances"])
|
375 |
+
except Exception as e:
|
376 |
+
print(f"ERROR during ChromaDB query in hybrid_search_gradio (ChatbotVol109): {type(e).__name__}: {e}")
|
377 |
+
return "Σφάλμα κατά την σημασιολογική αναζήτηση. Επικοινωνήστε με τον διαχειριστή."
|
378 |
+
|
379 |
+
sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])}
|
380 |
+
|
381 |
+
# Λεξική Αναζήτηση (παραμένει ίδια η λογική)
|
382 |
+
q_char_sparse = char_vec.transform([q_pre])
|
383 |
+
q_char_normalized = sk_normalize(q_char_sparse)
|
384 |
+
char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten()
|
385 |
+
q_word_sparse = word_vec.transform([q_pre])
|
386 |
+
q_word_normalized = sk_normalize(q_word_sparse)
|
387 |
+
word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten()
|
388 |
+
|
389 |
+
lex_sims = {}
|
390 |
+
for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)):
|
391 |
+
if c_score > 0 or w_score > 0:
|
392 |
+
if idx < len(ids): lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score
|
393 |
+
else: print(f"Warning (hybrid_search): Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).")
|
394 |
+
|
395 |
+
exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t} # Exact match παραμένει
|
396 |
+
|
397 |
+
# Υβριδικό Score (παραμένει η λογική)
|
398 |
+
all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set
|
399 |
+
scored = []
|
400 |
+
for chunk_id_key in all_chunk_ids_set:
|
401 |
+
s = alpha * sem_sims.get(chunk_id_key, 0.0) + (1 - alpha) * lex_sims.get(chunk_id_key, 0.0)
|
402 |
+
if chunk_id_key in exact_ids_set: s = 1.0 # Boost για exact match
|
403 |
+
scored.append((chunk_id_key, s))
|
404 |
+
|
405 |
+
scored.sort(key=lambda x: x[1], reverse=True)
|
406 |
+
|
407 |
+
# Μορφοποίηση Εξόδου (παραμένει η λογική, αλλά τα snippets θα είναι από τα raw_chunks)
|
408 |
+
hits_output = []
|
409 |
+
seen_doc_main_ids = set()
|
410 |
+
for chunk_id_val, score_val in scored:
|
411 |
+
try: idx_in_lists = ids.index(chunk_id_val)
|
412 |
+
except ValueError:
|
413 |
+
print(f"Warning (hybrid_search): chunk_id '{chunk_id_val}' not found in loaded ids. Skipping.")
|
414 |
+
continue
|
415 |
+
|
416 |
+
doc_meta = metas[idx_in_lists]
|
417 |
+
doc_main_id = doc_meta['id']
|
418 |
+
|
419 |
+
if doc_main_id in seen_doc_main_ids: continue # Ένα αποτέλεσμα ανά κύριο έγγραφο
|
420 |
+
|
421 |
+
original_url_from_meta = doc_meta.get('url', '#')
|
422 |
+
pdf_gcs_url = "#"
|
423 |
+
pdf_filename_display = "N/A"
|
424 |
+
if original_url_from_meta and original_url_from_meta != '#':
|
425 |
+
pdf_filename_extracted = os.path.basename(original_url_from_meta)
|
426 |
+
if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"):
|
427 |
+
pdf_gcs_url = f"{GCS_PUBLIC_URL_PREFIX}{pdf_filename_extracted}"
|
428 |
+
pdf_filename_display = pdf_filename_extracted
|
429 |
+
elif pdf_filename_extracted: pdf_filename_display = "Source is not a PDF"
|
430 |
+
|
431 |
+
hits_output.append({
|
432 |
+
"score": score_val, "title": doc_meta.get('title', 'N/A'),
|
433 |
+
"snippet": raw_chunks[idx_in_lists][:700] + " ...", # Αυξήθηκε λίγο το snippet
|
434 |
+
"original_url_meta": original_url_from_meta, "pdf_serve_url": pdf_gcs_url,
|
435 |
+
"pdf_filename_display": pdf_filename_display
|
436 |
+
})
|
437 |
+
seen_doc_main_ids.add(doc_main_id)
|
438 |
+
if len(hits_output) >= k: break
|
439 |
+
|
440 |
+
if not hits_output: return "Δεν βρέθηκαν σχετικά αποτελέσματα."
|
441 |
+
|
442 |
+
# Δημιουργία Markdown εξόδου
|
443 |
+
model_short_name = MODEL_NAME.split('/')[-1].replace("Llama-Krikri-", "LK-") # Συντομογραφία
|
444 |
+
output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα (Μοντέλο: {model_short_name}):\n\n"
|
445 |
+
for hit in hits_output:
|
446 |
+
output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n"
|
447 |
+
snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100)
|
448 |
+
output_md += f"**Απόσπασμα:** {snippet_wrapped}\n"
|
449 |
+
if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#':
|
450 |
+
output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n"
|
451 |
+
elif hit['original_url_meta'] and hit['original_url_meta'] != '#':
|
452 |
+
output_md += f"**Πηγή (αρχικό από metadata):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n"
|
453 |
+
else:
|
454 |
+
output_md += f"**Πηγή:** Δεν είναι διαθέσιμη\n"
|
455 |
+
output_md += "---\n"
|
456 |
+
return output_md
|
457 |
+
|
458 |
+
# ---------------------- GRADIO INTERFACE -----------------------------------
|
459 |
+
print("🚀 Launching Gradio Interface for ChatbotVol109 (Llama Krikri)...")
|
460 |
+
model_display_name = MODEL_NAME.split('/')[-1].replace("Llama-Krikri-", "LK-") # Συντομογραφία για τον τίτλο
|
461 |
+
|
462 |
+
iface = gr.Interface(
|
463 |
+
fn=hybrid_search_gradio,
|
464 |
+
inputs=gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label=f"Ερώτηση προς τον βοηθό (Μοντέλο: {model_display_name}):"),
|
465 |
+
outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False), # sanitize_html=False επιτρέπει το link
|
466 |
+
title=f"🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (ChatbotVol109 - {model_display_name})",
|
467 |
+
description=(f"Πληκτρολογήστε την ερώτησή σας για αναζήτηση. Χρησιμοποιεί το μοντέλο: {MODEL_NAME}.\n"
|
468 |
+
"Τα PDF ανοίγουν από Google Cloud Storage σε νέα καρτέλα."),
|
469 |
+
allow_flagging="never",
|
470 |
+
examples=[ # Διατηρήστε ή ενημερώστε τα παραδείγματα
|
471 |
+
["Τεχνολογίας τροφίμων;", 5],
|
472 |
+
["Αμπελουργίας και της οινολογίας", 3],
|
473 |
+
["Ποιες θέσεις αφορούν διδάσκοντες μερικής απασχόλησης στο Τμήμα Νοσηλευτικής του Πανεπιστημίου Ιωαννίνων;", 5]
|
474 |
+
],
|
475 |
+
)
|
476 |
+
|
477 |
+
if __name__ == '__main__':
|
478 |
+
iface.launch()
|