Krikri / app.py
TzepChris's picture
Update app.py
90f8ef5 verified
import gradio as gr
import torch
import unicodedata
import re
import numpy as np
from pathlib import Path
from transformers import AutoTokenizer, AutoModel # AutoModelForCausalLM μπορεί να είναι εναλλακτική για Llama
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.preprocessing import normalize as sk_normalize
import chromadb
import joblib
import pickle
import scipy.sparse
import textwrap
import os
import json # Για το διάβασμα του JSON κατά το setup
import tqdm.auto as tq # Για progress bars κατά το setup
# --------------------------- CONFIG για ChatbotVol109 -----------------------------------
# --- Ρυθμίσεις Μοντέλου και Βάσης Δεδομένων ---
MODEL_NAME = "ilsp/Llama-Krikri-8B-Base" # ΝΕΟ ΜΟΝΤΕΛΟ
PERSISTENT_STORAGE_ROOT = Path("/data") # Για Hugging Face Spaces Persistent Storage
DB_DIR_APP = PERSISTENT_STORAGE_ROOT / "chroma_db_ChatbotVol109" # ΝΕΟ PATH
COL_NAME = "collection_chatbotvol109" # ΝΕΟ ΟΝΟΜΑ ΣΥΛΛΟΓΗΣ
ASSETS_DIR_APP = PERSISTENT_STORAGE_ROOT / "assets_ChatbotVol109" # ΝΕΟ PATH ASSETS
DATA_PATH_FOR_SETUP = "./dataset14.json" # Διατηρήστε ή αλλάξτε αν το dataset είναι διαφορετικό
# --- Ρυθμίσεις για Google Cloud Storage για τα PDF links ---
GCS_BUCKET_NAME = "chatbotthesisihu" # Το δικό σας GCS Bucket Name
GCS_PUBLIC_URL_PREFIX = f"https://storage.googleapis.com/{GCS_BUCKET_NAME}/"
# -------------------------------------------------------------
# --- Παράμετροι Αναζήτησης και Μοντέλου ---
CHUNK_SIZE = 512 # Εξετάστε την αύξηση αυτού για Llama (π.χ. 1024, 2048), ανάλογα με τη μνήμη και το context window του μοντέλου
CHUNK_OVERLAP = 40
BATCH_EMB = 4 # Μειωμένο BATCH_EMB για μεγάλα μοντέλα όπως το Llama 8B
ALPHA_BASE = 0.2
ALPHA_LONGQ = 0.35
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Το device_map="auto" θα χειριστεί την τοποθέτηση του μοντέλου
print(f"Running ChatbotVol109 on main device context: {DEVICE}") # Το μοντέλο μπορεί να είναι κατανεμημένο
print(f"Using model: {MODEL_NAME}")
# === ΛΟΓΙΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΒΑΣΗΣ ΚΑΙ ASSETS (Αν δεν υπάρχουν) ===
def setup_database_and_assets():
print("Checking if database and assets need to be created for ChatbotVol109...")
run_setup = True
if DB_DIR_APP.exists() and ASSETS_DIR_APP.exists() and (ASSETS_DIR_APP / "ids.pkl").exists():
try:
client_check = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
collection_check = client_check.get_collection(name=COL_NAME)
if collection_check.count() > 0:
print("✓ Database and assets for ChatbotVol109 appear to exist and collection is populated. Skipping setup.")
run_setup = False
else:
print("Collection exists but is empty. Proceeding with setup for ChatbotVol109.")
if DB_DIR_APP.exists():
import shutil
print(f"Attempting to clean up existing empty/corrupt DB directory: {DB_DIR_APP}")
shutil.rmtree(DB_DIR_APP)
except Exception as e_check:
print(f"Database or collection check failed (Error: {e_check}). Proceeding with setup for ChatbotVol109.")
if DB_DIR_APP.exists():
import shutil
print(f"Attempting to clean up existing corrupt DB directory: {DB_DIR_APP}")
shutil.rmtree(DB_DIR_APP)
if not run_setup:
return True
print(f"!Database/Assets for ChatbotVol109 not found or incomplete. Starting setup process.")
print(f"This will take a very long time, especially on the first run with a large model!")
ASSETS_DIR_APP.mkdir(parents=True, exist_ok=True)
DB_DIR_APP.mkdir(parents=True, exist_ok=True)
def _strip_acc_setup(s:str)->str: return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch))
_STOP_SETUP = {"σχετικο","σχετικά","με","και"}
def _preprocess_setup(txt:str)->str:
txt = _strip_acc_setup(txt.lower())
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
txt = re.sub(r"\s+", " ", txt).strip()
return " ".join(w for w in txt.split() if w not in _STOP_SETUP)
def _chunk_text_setup(text, tokenizer_setup):
# Η λογική του chunking παραμένει ίδια, αλλά το CHUNK_SIZE μπορεί να προσαρμοστεί
token_ids = tokenizer_setup.encode(text, add_special_tokens=False)
if len(token_ids) <= (CHUNK_SIZE - tokenizer_setup.model_max_length + tokenizer_setup.max_len_single_sentence): # Προσαρμογή για special tokens
return [text]
# Η παρακάτω λογική μπορεί να χρειαστεί προσαρμογή ανάλογα με το πώς το Llama tokenizer χειρίζεται τα special tokens για chunking.
# Για απλότητα, διατηρούμε την υπάρχουσα λογική chunking με βάση τα token IDs.
# ids_with_special_tokens = tokenizer_setup(text, truncation=False, padding=False)["input_ids"] # Αυτό μπορεί να είναι πολύ μεγάλο
# Απλοποιημένη προσέγγιση chunking με βάση το CHUNK_SIZE για tokens
# Χρησιμοποιούμε text_target για να βρούμε tokens χωρίς special tokens για το split
text_target = tokenizer_setup.decode(tokenizer_setup.encode(text, add_special_tokens=False))
tokens = tokenizer_setup.tokenize(text_target)
chunks = []
current_chunk_tokens = []
current_length = 0
for token in tokens:
current_chunk_tokens.append(token)
current_length +=1 # Κατ' εκτίμηση, ένα token του tokenizer
if current_length >= CHUNK_SIZE - CHUNK_OVERLAP: # Αφήνουμε χώρο για overlap
# Βρες σημείο για overlap
overlap_point = max(0, len(current_chunk_tokens) - CHUNK_OVERLAP)
chunk_to_add_tokens = current_chunk_tokens[:overlap_point + (CHUNK_SIZE - CHUNK_OVERLAP)]
decoded_chunk = tokenizer_setup.convert_tokens_to_string(chunk_to_add_tokens).strip()
if decoded_chunk: chunks.append(decoded_chunk)
current_chunk_tokens = current_chunk_tokens[overlap_point:]
current_length = len(current_chunk_tokens)
if current_chunk_tokens: # Προσθήκη του τελευταίου chunk
decoded_chunk = tokenizer_setup.convert_tokens_to_string(current_chunk_tokens).strip()
if decoded_chunk: chunks.append(decoded_chunk)
return chunks if chunks else [text]
def _extract_embeddings_setup(texts, tokenizer_setup, model_setup, bs=BATCH_EMB):
out_embeddings = []
model_setup.eval() # Βεβαιωθείτε ότι το μοντέλο είναι σε eval mode
for i in tq.tqdm(range(0, len(texts), bs), desc="Embedding texts for DB setup (Llama)"):
batch_texts = texts[i:i+bs]
# Για Llama, το padding_side μπορεί να είναι σημαντικό. Συνήθως 'left' για generation, 'right' για classification/embeddings.
# Ελέγξτε την τεκμηρίωση του ilsp/Llama-Krikri-8B-Base αν έχει συγκεκριμένες απαιτήσεις.
# tokenizer_setup.padding_side = "right" # Ορισμένα Llama fine-tunes το προτιμούν
enc = tokenizer_setup(batch_texts, padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt")
# Μετακίνηση των inputs στη συσκευή όπου βρίσκεται το πρώτο layer του μοντέλου (λόγω device_map)
# Αυτό γίνεται αυτόματα από το accelerate αν τα inputs είναι στο CPU.
# enc = {k: v.to(model_setup.device) for k,v in enc.items()} # Δεν χρειάζεται συνήθως με device_map
with torch.no_grad():
model_output = model_setup(**enc, output_hidden_states=True) # Βεβαιωθείτε ότι παίρνετε hidden_states
last_hidden_state = model_output.hidden_states[-1] # Για Llama, παίρνουμε το τελευταίο hidden state
# Στρατηγική: Embedding του τελευταίου token
# Πρέπει να βρούμε το index του τελευταίου *πραγματικού* token, όχι padding token.
# Αν το tokenizer κάνει right padding (default για πολλούς Llama tokenizers):
if tokenizer_setup.padding_side == "right":
sequence_lengths = enc['attention_mask'].sum(dim=1) - 1
pooled_embeddings = last_hidden_state[torch.arange(last_hidden_state.size(0), device=last_hidden_state.device), sequence_lengths]
else: # Αν κάνει left padding, το τελευταίο token είναι πάντα στο -1 (αν δεν υπάρχει truncation που αφαιρεί το EOS)
pooled_embeddings = last_hidden_state[:, -1, :]
# Εναλλακτικά, mean pooling (πιο στιβαρό αν δεν είστε σίγουροι για το padding ή το last token)
# attention_mask = enc['attention_mask']
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
# sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, 1)
# sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# pooled_embeddings = sum_embeddings / sum_mask
normalized_embeddings = torch.nn.functional.normalize(pooled_embeddings, p=2, dim=1)
out_embeddings.append(normalized_embeddings.cpu())
return torch.cat(out_embeddings).numpy()
print(f"⏳ (Setup) Loading Model ({MODEL_NAME}) and Tokenizer for ChatbotVol109...")
# Για Llama, μπορεί να χρειαστεί trust_remote_code=True
# Και device_map="auto" για μεγάλα μοντέλα
tokenizer_setup = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
# Βεβαιωθείτε ότι το padding token έχει οριστεί αν δεν υπάρχει.
if tokenizer_setup.pad_token is None:
tokenizer_setup.pad_token = tokenizer_setup.eos_token # Συνηθισμένο για Llama
print("Warning: pad_token was not set. Using eos_token as pad_token.")
# Φόρτωση μοντέλου με device_map="auto" για διαχείριση μνήμης.
# Εξετάστε την προσθήκη load_in_8bit=True ή load_in_4bit=True αν η μνήμη είναι πρόβλημα (απαιτεί bitsandbytes)
model_setup = AutoModel.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
device_map="auto",
# torch_dtype=torch.float16 # Εξετάστε για μείωση μνήμης, αν υποστηρίζεται
)
print("✓ (Setup) Model and Tokenizer loaded for ChatbotVol109.")
print(f"⏳ (Setup) Reading & chunking JSON data from {DATA_PATH_FOR_SETUP}...")
if not Path(DATA_PATH_FOR_SETUP).exists():
print(f"!!! CRITICAL SETUP ERROR: Dataset file {DATA_PATH_FOR_SETUP} not found! Please upload it.")
return False
with open(DATA_PATH_FOR_SETUP, encoding="utf-8") as f: docs_json = json.load(f)
raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup = [], [], [], []
for d_setup in tq.tqdm(docs_json, desc="(Setup) Processing documents"):
doc_text = d_setup.get("text")
if not doc_text: continue
chunked_doc_texts = _chunk_text_setup(doc_text, tokenizer_setup)
if not chunked_doc_texts: continue
for idx, chunk in enumerate(chunked_doc_texts):
if not chunk.strip(): continue
raw_chunks_setup.append(chunk)
pre_chunks_setup.append(_preprocess_setup(chunk)) # Το preprocess παραμένει ίδιο
metas_setup.append({"id": d_setup["id"], "title": d_setup["title"], "url": d_setup["url"], "chunk_num": idx+1, "total_chunks": len(chunked_doc_texts)})
ids_list_setup.append(f'{d_setup["id"]}_c{idx+1}')
print(f" → (Setup) Total chunks created: {len(raw_chunks_setup):,}")
if not raw_chunks_setup:
print("!!! CRITICAL SETUP ERROR: No chunks were created from the dataset.")
return False
print("⏳ (Setup) Building lexical matrices (TF-IDF)...") # Αυτό παραμένει ίδιο
char_vec_setup = HashingVectorizer(analyzer="char_wb", ngram_range=(2,5), n_features=2**20, norm=None, alternate_sign=False, binary=True)
word_vec_setup = HashingVectorizer(analyzer="word", ngram_range=(1,2), n_features=2**19, norm=None, alternate_sign=False, binary=True)
X_char_setup = sk_normalize(char_vec_setup.fit_transform(pre_chunks_setup))
X_word_setup = sk_normalize(word_vec_setup.fit_transform(pre_chunks_setup))
print("✓ (Setup) Lexical matrices built.")
print(f"⏳ (Setup) Setting up ChromaDB client at {DB_DIR_APP}...")
client_setup = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
print(f" → (Setup) Creating collection: {COL_NAME}")
try:
client_setup.delete_collection(COL_NAME)
print(f" ℹ️ (Setup) Deleted existing collection '{COL_NAME}' to ensure fresh setup.")
except Exception as e_del_col:
print(f" ℹ️ (Setup) Collection '{COL_NAME}' not found or could not be deleted (normal if first run): {e_del_col}")
pass
col_setup = client_setup.get_or_create_collection(COL_NAME, metadata={"hnsw:space":"cosine"})
print("⏳ (Setup) Encoding chunks with Llama and streaming to ChromaDB...")
# Η _cls_embed_setup έχει μετονομαστεί σε _extract_embeddings_setup και προσαρμοστεί
all_embeddings = _extract_embeddings_setup(pre_chunks_setup, tokenizer_setup, model_setup, bs=BATCH_EMB)
# Προσθήκη σε batches στη ChromaDB
for start_idx in tq.tqdm(range(0, len(pre_chunks_setup), BATCH_EMB*10), desc="(Setup) Adding to ChromaDB"): # Μεγαλύτερο batch για add
end_idx = min(start_idx + BATCH_EMB*10, len(pre_chunks_setup))
batch_ids = ids_list_setup[start_idx:end_idx]
batch_metadatas = metas_setup[start_idx:end_idx]
batch_documents = pre_chunks_setup[start_idx:end_idx] # Αποθηκεύουμε τα preprocessed για συνέπεια
batch_embeddings_to_add = all_embeddings[start_idx:end_idx]
if not batch_ids: continue
col_setup.add(embeddings=batch_embeddings_to_add.tolist(), documents=batch_documents, metadatas=batch_metadatas, ids=batch_ids)
final_count = col_setup.count()
print(f"✓ (Setup) Index built and stored in ChromaDB for ChatbotVol109. Final count: {final_count}")
if final_count != len(ids_list_setup):
print(f"!!! WARNING (Setup): Mismatch after setup! Expected {len(ids_list_setup)} items, got {final_count}")
print(f"💾 (Setup) Saving assets to {ASSETS_DIR_APP}...")
joblib.dump(char_vec_setup, ASSETS_DIR_APP / "char_vectorizer.joblib")
joblib.dump(word_vec_setup, ASSETS_DIR_APP / "word_vectorizer.joblib")
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_char_sparse.npz", X_char_setup)
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_word_sparse.npz", X_word_setup)
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "wb") as f: pickle.dump(pre_chunks_setup, f)
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "wb") as f: pickle.dump(raw_chunks_setup, f)
with open(ASSETS_DIR_APP / "ids.pkl", "wb") as f: pickle.dump(ids_list_setup, f)
with open(ASSETS_DIR_APP / "metas.pkl", "wb") as f: pickle.dump(metas_setup, f)
print("✓ (Setup) Assets saved for ChatbotVol109.")
del tokenizer_setup, model_setup, docs_json, raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup, all_embeddings
del char_vec_setup, word_vec_setup, X_char_setup, X_word_setup, client_setup, col_setup
if DEVICE == "cuda": # Το device_map="auto" χειρίζεται τη μνήμη, αλλά ένα γενικό clear cache μπορεί να βοηθήσει
torch.cuda.empty_cache()
print("🎉 (Setup) Database and assets creation process for ChatbotVol109 complete!")
return True
# ==================================================================
setup_successful = setup_database_and_assets()
# ----------------------- PRE-/POST HELPERS (για την εφαρμογή Gradio) ----------------------------
def strip_acc(s: str) -> str:
return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch))
STOP = {"σχετικο", "σχετικα", "με", "και"}
def preprocess(txt: str) -> str:
txt = strip_acc(txt.lower())
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
txt = re.sub(r"\s+", " ", txt).strip()
return " ".join(w for w in txt.split() if w not in STOP)
# extract_embeddings για την εφαρμογή Gradio (ένα query κάθε φορά)
def extract_embeddings_app(texts, tokenizer_app, model_app):
model_app.eval()
# tokenizer_app.padding_side = "right" # Αν χρειάζεται
enc = tokenizer_app(texts, padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt")
# enc = {k: v.to(model_app.device) for k,v in enc.items()} # Δεν χρειάζεται με device_map
with torch.no_grad():
model_output = model_app(**enc, output_hidden_states=True)
last_hidden_state = model_output.hidden_states[-1]
if tokenizer_app.padding_side == "right":
sequence_lengths = enc['attention_mask'].sum(dim=1) - 1
pooled_embeddings = last_hidden_state[torch.arange(last_hidden_state.size(0), device=last_hidden_state.device), sequence_lengths]
else:
pooled_embeddings = last_hidden_state[:, -1, :]
normalized_embeddings = torch.nn.functional.normalize(pooled_embeddings, p=2, dim=1)
return normalized_embeddings.cpu().numpy()
# ---------------------- LOAD MODELS & DATA (Για την εφαρμογή Gradio) --------------------
tok = None
model = None
char_vec = None
word_vec = None
X_char = None
X_word = None
pre_chunks = None
raw_chunks = None
ids = None
metas = None
col = None
if setup_successful:
print(f"⏳ Loading Model ({MODEL_NAME}) and Tokenizer for Gradio App (ChatbotVol109)...")
try:
tok = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
if tok.pad_token is None:
tok.pad_token = tok.eos_token
# tok.padding_side = "right" # Ορίστε το padding side αν είναι απαραίτητο για συνέπεια
model = AutoModel.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
device_map="auto",
# torch_dtype=torch.float16
)
print("✓ Model and tokenizer loaded for Gradio App (ChatbotVol109).")
except Exception as e:
print(f"CRITICAL ERROR loading model/tokenizer for Gradio App (ChatbotVol109): {e}")
setup_successful = False
if setup_successful:
print(f"⏳ Loading TF-IDF/Assets from {ASSETS_DIR_APP} for Gradio App...")
try:
char_vec = joblib.load(ASSETS_DIR_APP / "char_vectorizer.joblib")
word_vec = joblib.load(ASSETS_DIR_APP / "word_vectorizer.joblib")
X_char = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_char_sparse.npz")
X_word = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_word_sparse.npz")
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "rb") as f: pre_chunks = pickle.load(f)
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "rb") as f: raw_chunks = pickle.load(f)
with open(ASSETS_DIR_APP / "ids.pkl", "rb") as f: ids = pickle.load(f)
with open(ASSETS_DIR_APP / "metas.pkl", "rb") as f: metas = pickle.load(f)
print("✓ TF-IDF/Assets loaded for Gradio App (ChatbotVol109).")
except Exception as e:
print(f"CRITICAL ERROR loading TF-IDF/Assets for Gradio App (ChatbotVol109): {e}")
setup_successful = False
if setup_successful:
print(f"⏳ Connecting to ChromaDB at {DB_DIR_APP} for Gradio App...")
try:
client = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
col = client.get_collection(COL_NAME)
print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}")
if col.count() == 0 and (ids and len(ids) > 0):
print(f"!!! CRITICAL WARNING: ChromaDB collection '{COL_NAME}' is EMPTY but assets were loaded. Setup might have failed.")
setup_successful = False
except Exception as e:
print(f"CRITICAL ERROR connecting to ChromaDB or getting collection for Gradio App (ChatbotVol109): {e}")
setup_successful = False
else:
print("!!! Setup process for ChatbotVol109 failed or was skipped. Gradio app will not function correctly. !!!")
# ---------------------- HYBRID SEARCH (Κύρια Λογική) ---
def hybrid_search_gradio(query, k=5):
if not setup_successful or not ids or not col or not model or not tok:
return "Σφάλμα: Η εφαρμογή δεν αρχικοποιήθηκε σωστά (ChatbotVol109). Ελέγξτε τα logs."
if not query.strip():
return "Παρακαλώ εισάγετε μια ερώτηση."
q_pre = preprocess(query)
words = q_pre.split()
alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE # Το alpha μπορεί να χρειαστεί re-tuning
# Σημασιολογική Αναζήτηση με το νέο μοντέλο
q_emb_np = extract_embeddings_app([q_pre], tok, model) # Χρήση της νέας συνάρτησης
q_emb_list = q_emb_np.tolist()
try:
sem_results = col.query(query_embeddings=q_emb_list, n_results=min(k * 30, len(ids)), include=["distances"])
except Exception as e:
print(f"ERROR during ChromaDB query in hybrid_search_gradio (ChatbotVol109): {type(e).__name__}: {e}")
return "Σφάλμα κατά την σημασιολογική αναζήτηση. Επικοινωνήστε με τον διαχειριστή."
sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])}
# Λεξική Αναζήτηση (παραμένει ίδια η λογική)
q_char_sparse = char_vec.transform([q_pre])
q_char_normalized = sk_normalize(q_char_sparse)
char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten()
q_word_sparse = word_vec.transform([q_pre])
q_word_normalized = sk_normalize(q_word_sparse)
word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten()
lex_sims = {}
for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)):
if c_score > 0 or w_score > 0:
if idx < len(ids): lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score
else: print(f"Warning (hybrid_search): Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).")
exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t} # Exact match παραμένει
# Υβριδικό Score (παραμένει η λογική)
all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set
scored = []
for chunk_id_key in all_chunk_ids_set:
s = alpha * sem_sims.get(chunk_id_key, 0.0) + (1 - alpha) * lex_sims.get(chunk_id_key, 0.0)
if chunk_id_key in exact_ids_set: s = 1.0 # Boost για exact match
scored.append((chunk_id_key, s))
scored.sort(key=lambda x: x[1], reverse=True)
# Μορφοποίηση Εξόδου (παραμένει η λογική, αλλά τα snippets θα είναι από τα raw_chunks)
hits_output = []
seen_doc_main_ids = set()
for chunk_id_val, score_val in scored:
try: idx_in_lists = ids.index(chunk_id_val)
except ValueError:
print(f"Warning (hybrid_search): chunk_id '{chunk_id_val}' not found in loaded ids. Skipping.")
continue
doc_meta = metas[idx_in_lists]
doc_main_id = doc_meta['id']
if doc_main_id in seen_doc_main_ids: continue # Ένα αποτέλεσμα ανά κύριο έγγραφο
original_url_from_meta = doc_meta.get('url', '#')
pdf_gcs_url = "#"
pdf_filename_display = "N/A"
if original_url_from_meta and original_url_from_meta != '#':
pdf_filename_extracted = os.path.basename(original_url_from_meta)
if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"):
pdf_gcs_url = f"{GCS_PUBLIC_URL_PREFIX}{pdf_filename_extracted}"
pdf_filename_display = pdf_filename_extracted
elif pdf_filename_extracted: pdf_filename_display = "Source is not a PDF"
hits_output.append({
"score": score_val, "title": doc_meta.get('title', 'N/A'),
"snippet": raw_chunks[idx_in_lists][:700] + " ...", # Αυξήθηκε λίγο το snippet
"original_url_meta": original_url_from_meta, "pdf_serve_url": pdf_gcs_url,
"pdf_filename_display": pdf_filename_display
})
seen_doc_main_ids.add(doc_main_id)
if len(hits_output) >= k: break
if not hits_output: return "Δεν βρέθηκαν σχετικά αποτελέσματα."
# Δημιουργία Markdown εξόδου
model_short_name = MODEL_NAME.split('/')[-1].replace("Llama-Krikri-", "LK-") # Συντομογραφία
output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα (Μοντέλο: {model_short_name}):\n\n"
for hit in hits_output:
output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n"
snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100)
output_md += f"**Απόσπασμα:** {snippet_wrapped}\n"
if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#':
output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n"
elif hit['original_url_meta'] and hit['original_url_meta'] != '#':
output_md += f"**Πηγή (αρχικό από metadata):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n"
else:
output_md += f"**Πηγή:** Δεν είναι διαθέσιμη\n"
output_md += "---\n"
return output_md
# ---------------------- GRADIO INTERFACE -----------------------------------
print("🚀 Launching Gradio Interface for KriKri...")
model_display_name = MODEL_NAME.split('/')[-1].replace("Llama-Krikri-", "LK-") # Συντομογραφία για τον τίτλο
iface = gr.Interface(
fn=hybrid_search_gradio,
inputs=gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label=f"Ερώτηση προς τον βοηθό (Μοντέλο: {model_display_name}):"),
outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False), # sanitize_html=False επιτρέπει το link
title=f"🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (KriKri - {model_display_name})",
description=(f"Πληκτρολογήστε την ερώτησή σας για αναζήτηση. Χρησιμοποιεί το μοντέλο: {MODEL_NAME}.\n"
"Τα PDF ανοίγουν από Google Cloud Storage σε νέα καρτέλα."),
allow_flagging="never",
examples=[ # Διατηρήστε ή ενημερώστε τα παραδείγματα
["Τεχνολογίας τροφίμων;", 5],
["Αμπελουργίας και της οινολογίας", 3],
["Ποιες θέσεις αφορούν διδάσκοντες μερικής απασχόλησης στο Τμήμα Νοσηλευτικής του Πανεπιστημίου Ιωαννίνων;", 5]
],
)
if __name__ == '__main__':
iface.launch()