Spaces:
Sleeping
Sleeping
Commit
·
e7bec26
1
Parent(s):
129775b
Fix: CPU-safe model for HF Space
Browse files
app.py
CHANGED
@@ -1,12 +1,22 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
|
|
3 |
import re
|
4 |
from pydub import AudioSegment
|
5 |
import speech_recognition as sr
|
6 |
import io
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Dictionaries to decode user inputs
|
12 |
gender_map = {1: "Female", 2: "Male"}
|
@@ -14,16 +24,31 @@ cholesterol_map = {1: "Normal", 2: "Elevated", 3: "Peak"}
|
|
14 |
glucose_map = {1: "Normal", 2: "High", 3: "Extreme"}
|
15 |
binary_map = {0: "No", 1: "Yes"}
|
16 |
|
17 |
-
# Function to
|
18 |
-
def
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Function to extract patient features from a phrase or transcribed audio
|
29 |
def extract_details_from_text(text):
|
@@ -61,20 +86,8 @@ if input_mode == "Manual Input":
|
|
61 |
active = st.radio("Physically Active?", [("No", 0), ("Yes", 1)], format_func=lambda x: x[0])[1]
|
62 |
|
63 |
if st.button("Predict Diagnosis"):
|
64 |
-
|
65 |
-
|
66 |
-
"gender": gender,
|
67 |
-
"height": height,
|
68 |
-
"weight": weight,
|
69 |
-
"ap_hi": ap_hi,
|
70 |
-
"ap_lo": ap_lo,
|
71 |
-
"cholesterol": cholesterol,
|
72 |
-
"glucose": glucose,
|
73 |
-
"smoke": smoke,
|
74 |
-
"alco": alco,
|
75 |
-
"active": active
|
76 |
-
}
|
77 |
-
diagnosis = get_prediction_from_api(payload)
|
78 |
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
|
79 |
|
80 |
elif input_mode == "Text Phrase":
|
@@ -83,9 +96,7 @@ elif input_mode == "Text Phrase":
|
|
83 |
try:
|
84 |
values = extract_details_from_text(phrase)
|
85 |
if all(v is not None for v in values):
|
86 |
-
|
87 |
-
payload = dict(zip(keys, values))
|
88 |
-
diagnosis = get_prediction_from_api(payload)
|
89 |
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
|
90 |
else:
|
91 |
st.warning("Couldn't extract all fields from the text. Please revise.")
|
@@ -93,7 +104,7 @@ elif input_mode == "Text Phrase":
|
|
93 |
st.error(f"Error: {e}")
|
94 |
|
95 |
elif input_mode == "Audio Upload":
|
96 |
-
uploaded_file = st.file_uploader("Upload audio file (WAV, MP3, M4A, MPEG)", type=["wav", "mp3", "m4a",
|
97 |
if uploaded_file:
|
98 |
st.audio(uploaded_file, format='audio/wav')
|
99 |
audio = AudioSegment.from_file(uploaded_file)
|
@@ -110,9 +121,7 @@ elif input_mode == "Audio Upload":
|
|
110 |
st.markdown(f"**Transcribed Text:** _{text}_")
|
111 |
values = extract_details_from_text(text)
|
112 |
if all(v is not None for v in values):
|
113 |
-
|
114 |
-
payload = dict(zip(keys, values))
|
115 |
-
diagnosis = get_prediction_from_api(payload)
|
116 |
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
|
117 |
else:
|
118 |
st.warning("Could not extract complete information from audio.")
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import re
|
5 |
from pydub import AudioSegment
|
6 |
import speech_recognition as sr
|
7 |
import io
|
8 |
|
9 |
+
# Load model and tokenizer from local fine-tuned directory
|
10 |
+
MODEL_PATH = "Tufan1/BioMedLM-Cardio-Fold4-CPU"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
12 |
+
#model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map=None, low_cpu_mem_usage=True, torch_dtype=torch.float32)
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
MODEL_PATH,
|
16 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
17 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
18 |
+
).to(device)
|
19 |
+
#model.to(device)
|
20 |
|
21 |
# Dictionaries to decode user inputs
|
22 |
gender_map = {1: "Female", 2: "Male"}
|
|
|
24 |
glucose_map = {1: "Normal", 2: "High", 3: "Extreme"}
|
25 |
binary_map = {0: "No", 1: "Yes"}
|
26 |
|
27 |
+
# Function to predict diagnosis using the LLM
|
28 |
+
def get_prediction(age, gender, height, weight, ap_hi, ap_lo,
|
29 |
+
cholesterol, glucose, smoke, alco, active):
|
30 |
+
input_text = f"""Patient Record:
|
31 |
+
- Age: {age} years
|
32 |
+
- Gender: {gender_map[gender]}
|
33 |
+
- Height: {height} cm
|
34 |
+
- Weight: {weight} kg
|
35 |
+
- Systolic BP: {ap_hi} mmHg
|
36 |
+
- Diastolic BP: {ap_lo} mmHg
|
37 |
+
- Cholesterol Level: {cholesterol_map[cholesterol]}
|
38 |
+
- Glucose Level: {glucose_map[glucose]}
|
39 |
+
- Smokes: {binary_map[smoke]}
|
40 |
+
- Alcohol Intake: {binary_map[alco]}
|
41 |
+
- Physically Active: {binary_map[active]}
|
42 |
+
|
43 |
+
Diagnosis:"""
|
44 |
+
|
45 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
46 |
+
model.eval()
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = model.generate(**inputs, max_new_tokens=4)
|
49 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
+
diagnosis = decoded.split("Diagnosis:")[-1].strip()
|
51 |
+
return diagnosis
|
52 |
|
53 |
# Function to extract patient features from a phrase or transcribed audio
|
54 |
def extract_details_from_text(text):
|
|
|
86 |
active = st.radio("Physically Active?", [("No", 0), ("Yes", 1)], format_func=lambda x: x[0])[1]
|
87 |
|
88 |
if st.button("Predict Diagnosis"):
|
89 |
+
diagnosis = get_prediction(age, gender, height, weight, ap_hi, ap_lo,
|
90 |
+
cholesterol, glucose, smoke, alco, active)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
|
92 |
|
93 |
elif input_mode == "Text Phrase":
|
|
|
96 |
try:
|
97 |
values = extract_details_from_text(phrase)
|
98 |
if all(v is not None for v in values):
|
99 |
+
diagnosis = get_prediction(*values)
|
|
|
|
|
100 |
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
|
101 |
else:
|
102 |
st.warning("Couldn't extract all fields from the text. Please revise.")
|
|
|
104 |
st.error(f"Error: {e}")
|
105 |
|
106 |
elif input_mode == "Audio Upload":
|
107 |
+
uploaded_file = st.file_uploader("Upload audio file (WAV, MP3, M4A, MPEG)", type=["wav", "mp3", "m4a","mpeg"])
|
108 |
if uploaded_file:
|
109 |
st.audio(uploaded_file, format='audio/wav')
|
110 |
audio = AudioSegment.from_file(uploaded_file)
|
|
|
121 |
st.markdown(f"**Transcribed Text:** _{text}_")
|
122 |
values = extract_details_from_text(text)
|
123 |
if all(v is not None for v in values):
|
124 |
+
diagnosis = get_prediction(*values)
|
|
|
|
|
125 |
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
|
126 |
else:
|
127 |
st.warning("Could not extract complete information from audio.")
|