narainkumbari commited on
Commit
c067bf9
·
1 Parent(s): dd07134

Fix: Load CPU-safe model for HF Space

Browse files
Files changed (1) hide show
  1. app.py +8 -25
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import gradio as gr
2
  import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import re
@@ -9,31 +9,14 @@ import io
9
 
10
  # Load model and tokenizer from local fine-tuned directory
11
  # Define base and adapter model paths
12
- #BASE_MODEL = "stanford-crfm/BioMedLM" # or the path you used originally
13
- #ADAPTER_PATH = "Tufan1/BioMedLM-Cardio-Fold4-CPU"
14
- #tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
15
- MODEL_PATH = "Tufan1/BioMedLM-Cardio-Fold4-CPU"
16
  # Force CPU-safe model loading
17
- #base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, torch_dtype=torch.float32)
18
- #model = PeftModel.from_pretrained(base_model, ADAPTER_PATH, device_map=None).to("cpu")
19
-
20
- tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
21
- model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, torch_dtype=torch.float16).to("cuda")
22
-
23
- def predict_disease(prompt):
24
- inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
25
- outputs = model.generate(**inputs, max_new_tokens=100)
26
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
27
-
28
- iface = gr.Interface(
29
- fn=predict_disease,
30
- inputs=gr.Textbox(label="Enter Symptoms"),
31
- outputs=gr.Textbox(label="Predicted Diagnosis"),
32
- title="Cardiovascular Disease Predictor",
33
- description="Enter patient symptoms to receive diagnosis based on BioMedLM."
34
- )
35
-
36
- iface.launch()
37
 
38
  # Dictionaries to decode user inputs
39
  gender_map = {1: "Female", 2: "Male"}
 
1
+ import streamlit as st
2
  import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import re
 
9
 
10
  # Load model and tokenizer from local fine-tuned directory
11
  # Define base and adapter model paths
12
+ BASE_MODEL = "stanford-crfm/BioMedLM" # or the path you used originally
13
+ ADAPTER_PATH = "Tufan1/BioMedLM-Cardio-Fold4-CPU"
14
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
15
+
16
  # Force CPU-safe model loading
17
+ base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, torch_dtype=torch.float32)
18
+ model = PeftModel.from_pretrained(base_model, ADAPTER_PATH, device_map=None).to("cpu")
19
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  # Dictionaries to decode user inputs
22
  gender_map = {1: "Female", 2: "Male"}