CVD-Predictor / app.py
Tufan1's picture
Update app.py
d5026a1 verified
raw
history blame
8.4 kB
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
from peft import PeftModel
from pydub import AudioSegment
import speech_recognition as sr
import io
from audio_recorder_streamlit import audio_recorder # Add at the top with other imports
# Load model and tokenizer from local fine-tuned directory
# Define base and adapter model paths
BASE_MODEL = "stanford-crfm/BioMedLM" # or the path you used originally
ADAPTER_ID = "Tufan1/BioMedLM-Cardio-Fold10-CPU" # HF model ID
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
# Load base model with safe settings
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float32,
low_cpu_mem_usage=True, # Reduces memory spikes
device_map="cpu" # Force CPU loading
)
# Load adapter directly from Hub
model = PeftModel.from_pretrained(
base_model,
ADAPTER_ID,
device_map="cpu",
adapter_name="cardio_adapter"
)
# Force CPU-safe model loading
#base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, torch_dtype=torch.float32)
#model = PeftModel.from_pretrained(base_model, ADAPTER_PATH, device_map=None).to("cpu")
# Dictionaries to decode user inputs
gender_map = {1: "Female", 2: "Male"}
cholesterol_map = {1: "Normal", 2: "Elevated", 3: "Peak"}
glucose_map = {1: "Normal", 2: "High", 3: "Extreme"}
binary_map = {0: "No", 1: "Yes"}
# Function to predict diagnosis using the LLM
def get_prediction(age, gender, height, weight, ap_hi, ap_lo,
cholesterol, glucose, smoke, alco, active):
input_text = f"""Patient Record:
- Age: {age} years
- Gender: {gender_map[gender]}
- Height: {height} cm
- Weight: {weight} kg
- Systolic BP: {ap_hi} mmHg
- Diastolic BP: {ap_lo} mmHg
- Cholesterol Level: {cholesterol_map[cholesterol]}
- Glucose Level: {glucose_map[glucose]}
- Smokes: {binary_map[smoke]}
- Alcohol Intake: {binary_map[alco]}
- Physically Active: {binary_map[active]}
Diagnosis:"""
inputs = tokenizer(input_text, return_tensors="pt").to("cpu")
model.eval()
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=4)
print("Raw output:", outputs) # Add this line
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
diagnosis = decoded.split("Diagnosis:")[-1].strip()
return diagnosis
# Function to extract patient features from a phrase or transcribed audio
def extract_details_from_text(text):
age = int(re.search(r'(\d+)\s*year', text).group(1)) if re.search(r'(\d+)\s*year', text) else None
gender = 2 if "man" in text.lower() else (1 if "female" in text.lower() else None)
height = int(re.search(r'(\d+)\s*cm', text).group(1)) if re.search(r'(\d+)\s*cm', text) else None
weight = int(re.search(r'(\d+)\s*kg', text).group(1)) if re.search(r'(\d+)\s*kg', text) else None
bp_match = re.search(r'BP\s*(\d+)[/](\d+)', text)
ap_hi, ap_lo = (int(bp_match.group(1)), int(bp_match.group(2))) if bp_match else (None, None)
cholesterol = 3 if "peak" in text.lower() else 2 if "elevated" in text.lower() else 1
glucose = 3 if "extreme" in text.lower() else 2 if "high" in text.lower() else 1
smoke = 1 if "smoke" in text.lower() else 0
alco = 1 if "alcohol" in text.lower() else 0
active = 1 if "exercise" in text.lower() or "active" in text.lower() else 0
return age, gender, height, weight, ap_hi, ap_lo, cholesterol, glucose, smoke, alco, active
# Streamlit UI
st.set_page_config(page_title="Cardiovascular Disease Predictor", layout="centered")
st.title("🫀 Cardiovascular Disease Predictor (LLM Powered)")
st.markdown("This tool uses a fine-tuned BioMedLM model to predict cardiovascular conditions from structured, text, or voice input.")
input_mode = st.radio("Choose input method:", ["Manual Input", "Text Phrase", "Audio Upload"])
if input_mode == "Manual Input":
age = st.number_input("Age (years)", min_value=1, max_value=120)
gender = st.selectbox("Gender", [("Female", 1), ("Male", 2)], format_func=lambda x: x[0])[1]
height = st.number_input("Height (cm)", min_value=50, max_value=250)
weight = st.number_input("Weight (kg)", min_value=10, max_value=200)
ap_hi = st.number_input("Systolic BP", min_value=80, max_value=250)
ap_lo = st.number_input("Diastolic BP", min_value=40, max_value=150)
cholesterol = st.selectbox("Cholesterol", [("Normal", 1), ("Elevated", 2), ("Peak", 3)], format_func=lambda x: x[0])[1]
glucose = st.selectbox("Glucose", [("Normal", 1), ("High", 2), ("Extreme", 3)], format_func=lambda x: x[0])[1]
smoke = st.radio("Smoker?", [("No", 0), ("Yes", 1)], format_func=lambda x: x[0])[1]
alco = st.radio("Alcohol Intake?", [("No", 0), ("Yes", 1)], format_func=lambda x: x[0])[1]
active = st.radio("Physically Active?", [("No", 0), ("Yes", 1)], format_func=lambda x: x[0])[1]
if st.button("Predict Diagnosis"):
diagnosis = get_prediction(age, gender, height, weight, ap_hi, ap_lo,
cholesterol, glucose, smoke, alco, active)
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
elif input_mode == "Text Phrase":
phrase = st.text_area("Enter patient details in natural language:", height=200)
if st.button("Extract & Predict"):
try:
values = extract_details_from_text(phrase)
if all(v is not None for v in values):
diagnosis = get_prediction(*values)
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
else:
st.warning("Couldn't extract all fields from the text. Please revise.")
except Exception as e:
st.error(f"Error: {e}")
elif input_mode == "Audio Upload":
audio_input_mode = st.radio("Choose audio input type:", ["Upload Audio File", "Record Audio"])
if audio_input_mode == "Upload Audio File":
uploaded_file = st.file_uploader("Upload audio file (WAV, MP3, M4A, MPEG)", type=["wav", "mp3", "m4a", "mpeg"])
if uploaded_file:
st.audio(uploaded_file, format='audio/wav')
audio = AudioSegment.from_file(uploaded_file)
if audio is not None and len(audio) > 0:
wav_io = io.BytesIO()
audio.export(wav_io, format="wav")
wav_io.seek(0)
recognizer = sr.Recognizer()
with sr.AudioFile(wav_io) as source:
audio_data = recognizer.record(source)
try:
text = recognizer.recognize_google(audio_data)
st.markdown(f"**Transcribed Text:** _{text}_")
values = extract_details_from_text(text)
if all(v is not None for v in values):
diagnosis = get_prediction(*values)
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
else:
st.warning("Could not extract complete information from audio.")
except Exception as e:
st.error(f"Audio processing error: {e}")
else:
st.error("Uploaded audio file is empty or not valid.")
elif audio_input_mode == "Record Audio":
audio = audio_recorder("Click to record", "Recording...")
if audio is not None and len(audio) > 0: # Check if audio is not None and has length
st.audio(audio, format="audio/wav") # Directly use audio as it is already a bytes object
wav_io = io.BytesIO(audio)
recognizer = sr.Recognizer()
with sr.AudioFile(wav_io) as source:
audio_data = recognizer.record(source)
try:
text = recognizer.recognize_google(audio_data)
st.markdown(f"**Transcribed Text:** _{text}_")
values = extract_details_from_text(text)
if all(v is not None for v in values):
diagnosis = get_prediction(*values)
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
else:
st.warning("Could not extract complete information from recorded audio.")
except Exception as e:
st.error(f"Recording processing error: {e}")
else:
st.error("No audio recorded or audio is empty.")