CVD-Predictor / app.py
narainkumbari's picture
Add Streamlit app for CVD prediction
4678109
raw
history blame
5.98 kB
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
from pydub import AudioSegment
import speech_recognition as sr
import io
# Load model and tokenizer from local fine-tuned directory
MODEL_PATH = "Tufan1/BioMedLM-Cardio-Fold2"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Dictionaries to decode user inputs
gender_map = {1: "Female", 2: "Male"}
cholesterol_map = {1: "Normal", 2: "High", 3: "Extreme"}
glucose_map = {1: "Normal", 2: "High", 3: "Extreme"}
binary_map = {0: "No", 1: "Yes"}
# Function to predict diagnosis using the LLM
def get_prediction(age, gender, height, weight, ap_hi, ap_lo,
cholesterol, glucose, smoke, alco, active):
input_text = f"""Patient Record:
- Age: {age} years
- Gender: {gender_map[gender]}
- Height: {height} cm
- Weight: {weight} kg
- Systolic BP: {ap_hi} mmHg
- Diastolic BP: {ap_lo} mmHg
- Cholesterol Level: {cholesterol_map[cholesterol]}
- Glucose Level: {glucose_map[glucose]}
- Smokes: {binary_map[smoke]}
- Alcohol Intake: {binary_map[alco]}
- Physically Active: {binary_map[active]}
Diagnosis:"""
inputs = tokenizer(input_text, return_tensors="pt").to(device)
model.eval()
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=4)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
diagnosis = decoded.split("Diagnosis:")[-1].strip()
return diagnosis
# Function to extract patient features from a phrase or transcribed audio
def extract_details_from_text(text):
age = int(re.search(r'(\d+)\s*year', text).group(1)) if re.search(r'(\d+)\s*year', text) else None
gender = 2 if "man" in text.lower() else (1 if "female" in text.lower() else None)
height = int(re.search(r'(\d+)\s*cm', text).group(1)) if re.search(r'(\d+)\s*cm', text) else None
weight = int(re.search(r'(\d+)\s*kg', text).group(1)) if re.search(r'(\d+)\s*kg', text) else None
bp_match = re.search(r'BP\s*(\d+)[/](\d+)', text)
ap_hi, ap_lo = (int(bp_match.group(1)), int(bp_match.group(2))) if bp_match else (None, None)
cholesterol = 3 if "peak" in text.lower() else 2 if "elevated" in text.lower() else 1
glucose = 3 if "extreme" in text.lower() else 2 if "high" in text.lower() else 1
smoke = 1 if "smoke" in text.lower() else 0
alco = 1 if "alcohol" in text.lower() else 0
active = 1 if "exercise" in text.lower() or "active" in text.lower() else 0
return age, gender, height, weight, ap_hi, ap_lo, cholesterol, glucose, smoke, alco, active
# Streamlit UI
st.set_page_config(page_title="Cardiovascular Disease Predictor", layout="centered")
st.title("🫀 Cardiovascular Disease Predictor (LLM Powered)")
st.markdown("This tool uses a fine-tuned BioMedLM model to predict cardiovascular conditions from structured, text, or voice input.")
input_mode = st.radio("Choose input method:", ["Manual Input", "Text Phrase", "Audio Upload"])
if input_mode == "Manual Input":
age = st.number_input("Age (years)", min_value=1, max_value=120)
gender = st.selectbox("Gender", [("Female", 1), ("Male", 2)], format_func=lambda x: x[0])[1]
height = st.number_input("Height (cm)", min_value=50, max_value=250)
weight = st.number_input("Weight (kg)", min_value=10, max_value=200)
ap_hi = st.number_input("Systolic BP", min_value=80, max_value=250)
ap_lo = st.number_input("Diastolic BP", min_value=40, max_value=150)
cholesterol = st.selectbox("Cholesterol", [("Normal", 1), ("High", 2), ("Extreme", 3)], format_func=lambda x: x[0])[1]
glucose = st.selectbox("Glucose", [("Normal", 1), ("High", 2), ("Extreme", 3)], format_func=lambda x: x[0])[1]
smoke = st.radio("Smoker?", [("No", 0), ("Yes", 1)], format_func=lambda x: x[0])[1]
alco = st.radio("Alcohol Intake?", [("No", 0), ("Yes", 1)], format_func=lambda x: x[0])[1]
active = st.radio("Physically Active?", [("No", 0), ("Yes", 1)], format_func=lambda x: x[0])[1]
if st.button("Predict Diagnosis"):
diagnosis = get_prediction(age, gender, height, weight, ap_hi, ap_lo,
cholesterol, glucose, smoke, alco, active)
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
elif input_mode == "Text Phrase":
phrase = st.text_area("Enter patient details in natural language:", height=200)
if st.button("Extract & Predict"):
try:
values = extract_details_from_text(phrase)
if all(v is not None for v in values):
diagnosis = get_prediction(*values)
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
else:
st.warning("Couldn't extract all fields from the text. Please revise.")
except Exception as e:
st.error(f"Error: {e}")
elif input_mode == "Audio Upload":
uploaded_file = st.file_uploader("Upload audio file (WAV, MP3, M4A)", type=["wav", "mp3", "m4a"])
if uploaded_file:
st.audio(uploaded_file, format='audio/wav')
audio = AudioSegment.from_file(uploaded_file)
wav_io = io.BytesIO()
audio.export(wav_io, format="wav")
wav_io.seek(0)
recognizer = sr.Recognizer()
with sr.AudioFile(wav_io) as source:
audio_data = recognizer.record(source)
try:
text = recognizer.recognize_google(audio_data)
st.markdown(f"**Transcribed Text:** _{text}_")
values = extract_details_from_text(text)
if all(v is not None for v in values):
diagnosis = get_prediction(*values)
st.success(f"🩺 **Predicted Diagnosis:** {diagnosis}")
else:
st.warning("Could not extract complete information from audio.")
except Exception as e:
st.error(f"Audio processing error: {e}")