Upload 2 files
Browse files- app.py +508 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
import os
|
6 |
+
from transformers import Wav2Vec2BertModel, AutoFeatureExtractor, HubertModel
|
7 |
+
import torch.nn as nn
|
8 |
+
from typing import Optional, Tuple
|
9 |
+
from transformers.file_utils import ModelOutput
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class SpeechClassifierOutput(ModelOutput):
|
15 |
+
loss: Optional[torch.FloatTensor] = None
|
16 |
+
logits: torch.FloatTensor = None
|
17 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
18 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
19 |
+
|
20 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
21 |
+
Wav2Vec2PreTrainedModel,
|
22 |
+
Wav2Vec2Model
|
23 |
+
)
|
24 |
+
class Wav2Vec2ClassificationHead(nn.Module):
|
25 |
+
"""Head for wav2vec classification task."""
|
26 |
+
|
27 |
+
def __init__(self, config):
|
28 |
+
super().__init__()
|
29 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
30 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
31 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
32 |
+
|
33 |
+
def forward(self, features, **kwargs):
|
34 |
+
x = features
|
35 |
+
x = self.dropout(x)
|
36 |
+
x = self.dense(x)
|
37 |
+
x = torch.tanh(x)
|
38 |
+
x = self.dropout(x)
|
39 |
+
x = self.out_proj(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
|
43 |
+
class Wav2Vec2ForSpeechClassification(nn.Module):
|
44 |
+
def __init__(self,model_name):
|
45 |
+
super().__init__()
|
46 |
+
self.num_labels = 2
|
47 |
+
self.pooling_mode = 'mean'
|
48 |
+
self.wav2vec2bert = Wav2Vec2BertModel.from_pretrained(model_name)
|
49 |
+
self.config = self.wav2vec2bert.config
|
50 |
+
self.classifier = Wav2Vec2ClassificationHead(self.wav2vec2bert.config)
|
51 |
+
|
52 |
+
def merged_strategy(self,hidden_states,mode="mean"):
|
53 |
+
if mode == "mean":
|
54 |
+
outputs = torch.mean(hidden_states, dim=1)
|
55 |
+
elif mode == "sum":
|
56 |
+
outputs = torch.sum(hidden_states, dim=1)
|
57 |
+
elif mode == "max":
|
58 |
+
outputs = torch.max(hidden_states, dim=1)[0]
|
59 |
+
else:
|
60 |
+
raise Exception(
|
61 |
+
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")
|
62 |
+
|
63 |
+
return outputs
|
64 |
+
|
65 |
+
def forward(self,input_features,attention_mask=None,output_attentions=None,output_hidden_states=None,return_dict=None,labels=None,):
|
66 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
67 |
+
outputs = self.wav2vec2bert(
|
68 |
+
input_features,
|
69 |
+
attention_mask=attention_mask,
|
70 |
+
output_attentions=output_attentions,
|
71 |
+
output_hidden_states=output_hidden_states,
|
72 |
+
return_dict=return_dict,
|
73 |
+
)
|
74 |
+
hidden_states = outputs.last_hidden_state
|
75 |
+
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode)
|
76 |
+
logits = self.classifier(hidden_states)
|
77 |
+
|
78 |
+
loss = None
|
79 |
+
if labels is not None:
|
80 |
+
if self.config.problem_type is None:
|
81 |
+
if self.num_labels == 1:
|
82 |
+
self.config.problem_type = "regression"
|
83 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
84 |
+
self.config.problem_type = "single_label_classification"
|
85 |
+
else:
|
86 |
+
self.config.problem_type = "multi_label_classification"
|
87 |
+
|
88 |
+
if self.config.problem_type == "regression":
|
89 |
+
loss_fct = MSELoss()
|
90 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels)
|
91 |
+
elif self.config.problem_type == "single_label_classification":
|
92 |
+
loss_fct = CrossEntropyLoss()
|
93 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
94 |
+
elif self.config.problem_type == "multi_label_classification":
|
95 |
+
loss_fct = BCEWithLogitsLoss()
|
96 |
+
loss = loss_fct(logits, labels)
|
97 |
+
|
98 |
+
if not return_dict:
|
99 |
+
output = (logits,) + outputs[2:]
|
100 |
+
return ((loss,) + output) if loss is not None else output
|
101 |
+
|
102 |
+
return SpeechClassifierOutput(
|
103 |
+
loss=loss,
|
104 |
+
logits=logits,
|
105 |
+
hidden_states=outputs.last_hidden_state,
|
106 |
+
attentions=outputs.attentions,
|
107 |
+
)
|
108 |
+
|
109 |
+
class HuBERT(nn.Module):
|
110 |
+
def __init__(self, model_name):
|
111 |
+
super().__init__()
|
112 |
+
self.num_labels = 2
|
113 |
+
self.pooling_mode = 'mean'
|
114 |
+
self.wav2vec2 = HubertModel.from_pretrained(model_name)
|
115 |
+
self.config = self.wav2vec2.config
|
116 |
+
self.classifier = Wav2Vec2ClassificationHead(self.wav2vec2.config)
|
117 |
+
|
118 |
+
def merged_strategy(self, hidden_states, mode="mean"):
|
119 |
+
if mode == "mean":
|
120 |
+
outputs = torch.mean(hidden_states, dim=1)
|
121 |
+
elif mode == "sum":
|
122 |
+
outputs = torch.sum(hidden_states, dim=1)
|
123 |
+
elif mode == "max":
|
124 |
+
outputs = torch.max(hidden_states, dim=1)[0]
|
125 |
+
else:
|
126 |
+
raise Exception(
|
127 |
+
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")
|
128 |
+
|
129 |
+
return outputs
|
130 |
+
|
131 |
+
def forward(self, input_values, attention_mask=None, output_attentions=None, output_hidden_states=None,
|
132 |
+
return_dict=None, labels=None, ):
|
133 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
134 |
+
outputs = self.wav2vec2(
|
135 |
+
input_values,
|
136 |
+
attention_mask=attention_mask,
|
137 |
+
output_attentions=output_attentions,
|
138 |
+
output_hidden_states=output_hidden_states,
|
139 |
+
return_dict=return_dict,
|
140 |
+
)
|
141 |
+
hidden_states = outputs.last_hidden_state
|
142 |
+
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode)
|
143 |
+
logits = self.classifier(hidden_states)
|
144 |
+
|
145 |
+
loss = None
|
146 |
+
if labels is not None:
|
147 |
+
if self.config.problem_type is None:
|
148 |
+
if self.num_labels == 1:
|
149 |
+
self.config.problem_type = "regression"
|
150 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
151 |
+
self.config.problem_type = "single_label_classification"
|
152 |
+
else:
|
153 |
+
self.config.problem_type = "multi_label_classification"
|
154 |
+
|
155 |
+
if self.config.problem_type == "regression":
|
156 |
+
loss_fct = MSELoss()
|
157 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels)
|
158 |
+
elif self.config.problem_type == "single_label_classification":
|
159 |
+
loss_fct = CrossEntropyLoss()
|
160 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
161 |
+
elif self.config.problem_type == "multi_label_classification":
|
162 |
+
loss_fct = BCEWithLogitsLoss()
|
163 |
+
loss = loss_fct(logits, labels)
|
164 |
+
|
165 |
+
if not return_dict:
|
166 |
+
output = (logits,) + outputs[2:]
|
167 |
+
return ((loss,) + output) if loss is not None else output
|
168 |
+
|
169 |
+
return SpeechClassifierOutput(
|
170 |
+
loss=loss,
|
171 |
+
logits=logits,
|
172 |
+
hidden_states=outputs.last_hidden_state,
|
173 |
+
attentions=outputs.attentions,
|
174 |
+
)
|
175 |
+
|
176 |
+
def pad(x, max_len=64000):
|
177 |
+
x_len = x.shape[0]
|
178 |
+
if x_len > max_len:
|
179 |
+
stt = np.random.randint(x_len - max_len)
|
180 |
+
return x[stt:stt + max_len]
|
181 |
+
# return x[:max_len]
|
182 |
+
|
183 |
+
# num_repeats = int(max_len / x_len) + 1
|
184 |
+
# padded_x = np.tile(x, (num_repeats))[:max_len]
|
185 |
+
pad_length = max_len - x_len
|
186 |
+
padded_x = np.concatenate([x, np.zeros(pad_length)], axis=0)
|
187 |
+
return padded_x
|
188 |
+
|
189 |
+
class AudioDeepfakeDetector:
|
190 |
+
def __init__(self):
|
191 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
192 |
+
self.models = {}
|
193 |
+
self.feature_extractors = {}
|
194 |
+
self.current_model = None
|
195 |
+
# model_name = 'facebook/w2v-bert-2.0'
|
196 |
+
# self.feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
197 |
+
# self.model = Wav2Vec2ForSpeechClassification(model_name).to(self.device)
|
198 |
+
# ckpt = torch.load("wave2vec2bert_wavefake.pth",map_location=self.device)
|
199 |
+
# self.model.load_state_dict(ckpt)
|
200 |
+
|
201 |
+
print(f"Using device: {self.device}")
|
202 |
+
print("Audio deepfake detector initilized")
|
203 |
+
|
204 |
+
|
205 |
+
def load_model(self, model_type):
|
206 |
+
"""Load the specified model type"""
|
207 |
+
if model_type in self.models:
|
208 |
+
self.current_model = model_type
|
209 |
+
return
|
210 |
+
|
211 |
+
try:
|
212 |
+
print(f"π Loading {model_type} model...")
|
213 |
+
|
214 |
+
if model_type == "Wave2Vec2BERT":
|
215 |
+
model_name = 'facebook/w2v-bert-2.0'
|
216 |
+
self.feature_extractors[model_type] = AutoFeatureExtractor.from_pretrained(model_name)
|
217 |
+
self.models[model_type] = Wav2Vec2ForSpeechClassification(model_name).to(self.device)
|
218 |
+
# checkpoint_path = "wave2vec2bert_wavefake.pth"
|
219 |
+
# if os.path.exists(checkpoint_path):
|
220 |
+
# ckpt = torch.load(checkpoint_path, map_location=self.device)
|
221 |
+
# self.models[model_type].load_state_dict(ckpt)
|
222 |
+
# print(f"β
Loaded checkpoint for {model_type}")
|
223 |
+
# else:
|
224 |
+
# print(f"β οΈ Checkpoint not found for {model_type}, using pretrained weights only")
|
225 |
+
|
226 |
+
try:
|
227 |
+
from huggingface_hub import hf_hub_download
|
228 |
+
checkpoint_path = hf_hub_download(
|
229 |
+
repo_id="TrustSafeAI/AudioDeepfakeDetectors",
|
230 |
+
filename="wave2vec2bert_wavefake.pth",
|
231 |
+
cache_dir="./models"
|
232 |
+
)
|
233 |
+
ckpt = torch.load(checkpoint_path, map_location=self.device)
|
234 |
+
self.models[model_type].load(ckpt)
|
235 |
+
print(f"β
Loaded checkpoint for {model_type}")
|
236 |
+
except Exception as e:
|
237 |
+
print(f"β οΈ Could not load checkpoint for {model_type}: {e}")
|
238 |
+
print("Using pretrained weights only")
|
239 |
+
|
240 |
+
elif model_type == "HuBERT":
|
241 |
+
model_name = 'facebook/hubert-large-ls960-ft'
|
242 |
+
self.feature_extractors[model_type] = AutoFeatureExtractor.from_pretrained(model_name)
|
243 |
+
self.models[model_type] = HuBERT(model_name).to(self.device)
|
244 |
+
|
245 |
+
# checkpoint_path = "hubert_large_wavefake.pth"
|
246 |
+
# if os.path.exists(checkpoint_path):
|
247 |
+
# ckpt = torch.load(checkpoint_path, map_location=self.device)
|
248 |
+
# self.models[model_type].load_state_dict(ckpt)
|
249 |
+
# print(f"β
Loaded checkpoint for {model_type}")
|
250 |
+
# else:
|
251 |
+
# print(f"β οΈ Checkpoint not found for {model_type}, using pretrained weights only")
|
252 |
+
try:
|
253 |
+
from huggingface_hub import hf_hub_download
|
254 |
+
checkpoint_path = hf_hub_download(
|
255 |
+
repo_id="TrustSafeAI/AudioDeepfakeDetectors", # ζΏζ’δΈΊδ½ η樑εδ»εΊ
|
256 |
+
filename="hubert_large_wavefake.pth",
|
257 |
+
cache_dir="./models"
|
258 |
+
)
|
259 |
+
ckpt = torch.load(checkpoint_path, map_location=self.device)
|
260 |
+
self.models[model_type].load_state_dict(ckpt)
|
261 |
+
print(f"β
Loaded checkpoint for {model_type}")
|
262 |
+
except Exception as e:
|
263 |
+
print(f"β οΈ Could not load checkpoint for {model_type}: {e}")
|
264 |
+
print("Using pretrained weights only")
|
265 |
+
|
266 |
+
self.current_model = model_type
|
267 |
+
print(f"β
{model_type} model loaded successfully")
|
268 |
+
|
269 |
+
except Exception as e:
|
270 |
+
print(f"β Error loading {model_type} model: {str(e)}")
|
271 |
+
raise
|
272 |
+
|
273 |
+
def preprocess_audio(self, audio_path, target_sr=16000, max_length=4):
|
274 |
+
try:
|
275 |
+
print(f"π Loading audio file: {os.path.basename(audio_path)}")
|
276 |
+
|
277 |
+
audio, sr = librosa.load(audio_path, sr=target_sr)
|
278 |
+
original_duration = len(audio) / sr
|
279 |
+
|
280 |
+
audio = pad(audio).reshape(-1)
|
281 |
+
audio = audio[np.newaxis, :]
|
282 |
+
|
283 |
+
|
284 |
+
print(f"β
Audio loaded successfully: {original_duration:.2f}s, {sr}Hz")
|
285 |
+
return audio, sr
|
286 |
+
|
287 |
+
except Exception as e:
|
288 |
+
print(f"β Audio processing error: {str(e)}")
|
289 |
+
raise
|
290 |
+
|
291 |
+
def extract_features(self, audio, sr, model_type):
|
292 |
+
print("π extract audio features...")
|
293 |
+
feature_extractor = self.feature_extractors[model_type]
|
294 |
+
|
295 |
+
inputs = feature_extractor(audio, sampling_rate=sr, return_attention_mask=True, padding_value=0, return_tensors="pt").to(self.device)
|
296 |
+
print("β
Feature extracion completed")
|
297 |
+
return inputs
|
298 |
+
|
299 |
+
def classifier(self, features, model_type):
|
300 |
+
model = self.models[model_type]
|
301 |
+
with torch.no_grad():
|
302 |
+
outputs = model(**features)
|
303 |
+
prob = outputs.logits.softmax(dim=-1)
|
304 |
+
fake_prob = prob[0][0].item()
|
305 |
+
|
306 |
+
return fake_prob
|
307 |
+
|
308 |
+
def predict(self, audio_path, model_type):
|
309 |
+
try:
|
310 |
+
print("π΅ Start analyzing...")
|
311 |
+
self.load_model(model_type)
|
312 |
+
audio, sr = self.preprocess_audio(audio_path)
|
313 |
+
|
314 |
+
features= self.extract_features(audio, sr, model_type)
|
315 |
+
|
316 |
+
fake_probability = self.classifier(features, model_type)
|
317 |
+
real_probability = 1 - fake_probability
|
318 |
+
|
319 |
+
threshold = 0.5
|
320 |
+
if fake_probability > threshold:
|
321 |
+
status = "SUSPICIOUS"
|
322 |
+
prediction = "π¨ Likely fake audio"
|
323 |
+
confidence = fake_probability
|
324 |
+
color = "red"
|
325 |
+
else:
|
326 |
+
status = "LIKELY_REAL"
|
327 |
+
prediction = "β
Likely real audio"
|
328 |
+
confidence = real_probability
|
329 |
+
color = "green"
|
330 |
+
|
331 |
+
print(f"\n{'='*50}")
|
332 |
+
print(f"π― Result: {prediction}")
|
333 |
+
print(f"π Confidence: {confidence:.1%}")
|
334 |
+
print(f"π Real Probability: {real_probability:.1%}")
|
335 |
+
print(f"π Fake Probability: {fake_probability:.1%}")
|
336 |
+
print(f"{'='*50}")
|
337 |
+
|
338 |
+
duration = len(audio) / sr
|
339 |
+
file_size = os.path.getsize(audio_path) / 1024
|
340 |
+
|
341 |
+
result_data = {
|
342 |
+
"status": status,
|
343 |
+
"prediction": prediction,
|
344 |
+
"confidence": confidence,
|
345 |
+
"real_probability": real_probability,
|
346 |
+
"fake_probability": fake_probability,
|
347 |
+
"duration": duration,
|
348 |
+
"sample_rate": sr,
|
349 |
+
"file_size_kb": file_size,
|
350 |
+
"model_used": model_type
|
351 |
+
}
|
352 |
+
|
353 |
+
return result_data
|
354 |
+
|
355 |
+
except Exception as e:
|
356 |
+
print(f"β Failed: {str(e)}")
|
357 |
+
return {"error": str(e)}
|
358 |
+
|
359 |
+
|
360 |
+
detector = AudioDeepfakeDetector()
|
361 |
+
|
362 |
+
def analyze_uploaded_audio(audio_file, model_choice):
|
363 |
+
if audio_file is None:
|
364 |
+
return "Please upload audio", {}
|
365 |
+
|
366 |
+
try:
|
367 |
+
result = detector.predict(audio_file, model_choice)
|
368 |
+
|
369 |
+
if "error" in result:
|
370 |
+
return f"Error: {result['error']}", {}
|
371 |
+
|
372 |
+
status_color = "#ff4444" if result['status'] == "SUSPICIOUS" else "#44ff44"
|
373 |
+
|
374 |
+
result_html = f"""
|
375 |
+
<div style="padding: 20px; border-radius: 10px; background-color: {status_color}20; border: 2px solid {status_color};">
|
376 |
+
<h3 style="color: {status_color}; margin-top: 0;">{result['prediction']}</h3>
|
377 |
+
<p><strong>Status:</strong> {result['status']}</p>
|
378 |
+
<p><strong>Confidence:</strong> {result['confidence']:.1%}</p>
|
379 |
+
</div>
|
380 |
+
"""
|
381 |
+
|
382 |
+
analysis_data = {
|
383 |
+
"status": result['status'],
|
384 |
+
"real_probability": f"{result['real_probability']:.1%}",
|
385 |
+
"fake_probability": f"{result['fake_probability']:.1%}",
|
386 |
+
}
|
387 |
+
|
388 |
+
return result_html, analysis_data
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
error_html = f"""
|
392 |
+
<div style="padding: 20px; border-radius: 10px; background-color: #ff444420; border: 2px solid #ff4444;">
|
393 |
+
<h3 style="color: #ff4444;">β Processing error</h3>
|
394 |
+
<p>{str(e)}</p>
|
395 |
+
</div>
|
396 |
+
"""
|
397 |
+
return error_html, {"error": str(e)}
|
398 |
+
|
399 |
+
def create_audio_interface():
|
400 |
+
with gr.Blocks(title="Audio Deepfake Detection", theme=gr.themes.Soft()) as interface:
|
401 |
+
gr.Markdown("""
|
402 |
+
<div style="text-align: center; margin-bottom: 30px;">
|
403 |
+
<h1 style="font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #333;">
|
404 |
+
Measuring the Robustness of Audio Deepfake Detection under Real-World Corruptions
|
405 |
+
</h1>
|
406 |
+
<p style="font-size: 16px; color: #666; margin-bottom: 15px;">
|
407 |
+
Audio deepfake detectors based on Wave2Vec2BERT and HuBERT speech foundation models (fine-tuned with Wavefake dataset).
|
408 |
+
</p>
|
409 |
+
<div style="font-size: 14px; color: #555; line-height: 1.8; text-align: left;">
|
410 |
+
<p><strong>Paper:</strong> <a href="https://arxiv.org/pdf/2503.17577" target="_blank" style="color: #4285f4; text-decoration: none;">https://arxiv.org/pdf/2503.17577</a></p>
|
411 |
+
<p><strong>Project Page:</strong> <a href="https://huggingface.co/spaces/TrustSafeAI/AudioPerturber" target="_blank" style="color: #4285f4; text-decoration: none;">"https://huggingface.co/spaces/TrustSafeAI/AudioPerturber</a></p>
|
412 |
+
<p><strong>Checkpoint and model card (To be added):</strong> <a href="https://huggingface.co/TrustSafeAI/Wave2Vec2BERT" target="_blank" style="color: #4285f4; text-decoration: none;">"https://huggingface.co/TrustSafeAI/Wave2Vec2BERT</a></p>
|
413 |
+
<p><strong>Github Codebase:</strong> <a href="https://github.com/Jessegator/Audio_robustness_evaluation" target="_blank" style="color: #4285f4; text-decoration: none;">https://github.com/Jessegator/Audio_robustness_evaluation</a></p>
|
414 |
+
</div>
|
415 |
+
</div>
|
416 |
+
<hr style="margin: 30px 0; border: none; border-top: 1px solid #e0e0e0;">
|
417 |
+
""")
|
418 |
+
|
419 |
+
gr.Markdown("""
|
420 |
+
# Audio Deepfake Detection
|
421 |
+
|
422 |
+
**Supported Format**: .wav, .mp3, .flac, .m4a, etc.
|
423 |
+
""")
|
424 |
+
|
425 |
+
with gr.Row():
|
426 |
+
# model_choice = gr.Dropdown(
|
427 |
+
# choices=["Wave2Vec2BERT", "HuBERT"],
|
428 |
+
# value="Wave2Vec2BERT",
|
429 |
+
# label="π€ Select Model",
|
430 |
+
# info="Choose the foundation model for detection"
|
431 |
+
# )
|
432 |
+
|
433 |
+
with gr.Column(scale=1):
|
434 |
+
model_choice = gr.Dropdown(
|
435 |
+
choices=["Wave2Vec2BERT", "HuBERT"],
|
436 |
+
value="Wave2Vec2BERT",
|
437 |
+
label="π€ Select Model",
|
438 |
+
info="Choose the foundation model for detection"
|
439 |
+
)
|
440 |
+
|
441 |
+
audio_input = gr.Audio(
|
442 |
+
label="π Upload audio file",
|
443 |
+
type="filepath",
|
444 |
+
show_label=True,
|
445 |
+
interactive=True
|
446 |
+
)
|
447 |
+
|
448 |
+
analyze_btn = gr.Button(
|
449 |
+
"π Start analyzing",
|
450 |
+
variant="primary",
|
451 |
+
size="lg"
|
452 |
+
)
|
453 |
+
|
454 |
+
gr.Markdown("### π Play uploaded audio")
|
455 |
+
audio_player = gr.Audio(
|
456 |
+
label="Audio Player",
|
457 |
+
interactive=False,
|
458 |
+
show_label=False
|
459 |
+
)
|
460 |
+
|
461 |
+
with gr.Column(scale=1):
|
462 |
+
result_display = gr.HTML(
|
463 |
+
label="π― Results",
|
464 |
+
value="<p style='text-align: center; color: #666;'>Waiting for uploading...</p>"
|
465 |
+
)
|
466 |
+
|
467 |
+
analysis_json = gr.JSON(
|
468 |
+
label="π Detailed analysis",
|
469 |
+
value={}
|
470 |
+
)
|
471 |
+
|
472 |
+
def update_player_and_analyze(audio_file, model_type):
|
473 |
+
if audio_file is not None:
|
474 |
+
result_html, result_data = analyze_uploaded_audio(audio_file, model_type)
|
475 |
+
return audio_file, result_html, result_data
|
476 |
+
else:
|
477 |
+
return None, "<p style='text-align: center; color: #666;'>Waiting for uploading...</p>", {}
|
478 |
+
|
479 |
+
audio_input.change(
|
480 |
+
fn=update_player_and_analyze,
|
481 |
+
inputs=[audio_input, model_choice],
|
482 |
+
outputs=[audio_player, result_display, analysis_json]
|
483 |
+
)
|
484 |
+
|
485 |
+
analyze_btn.click(
|
486 |
+
fn=analyze_uploaded_audio,
|
487 |
+
inputs=[audio_input, model_choice],
|
488 |
+
outputs=[result_display, analysis_json]
|
489 |
+
)
|
490 |
+
|
491 |
+
model_choice.change(
|
492 |
+
fn=lambda audio_file, model_type: analyze_uploaded_audio(audio_file, model_type) if audio_file is not None else ("Please upload audio first", {}),
|
493 |
+
inputs=[audio_input, model_choice],
|
494 |
+
outputs=[result_display, analysis_json]
|
495 |
+
)
|
496 |
+
|
497 |
+
return interface
|
498 |
+
|
499 |
+
if __name__ == "__main__":
|
500 |
+
print("π Create interface...")
|
501 |
+
demo = create_audio_interface()
|
502 |
+
|
503 |
+
print("π± Launching...")
|
504 |
+
demo.launch(
|
505 |
+
share=False,
|
506 |
+
debug=True,
|
507 |
+
show_error=True
|
508 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
numpy
|
4 |
+
librosa
|
5 |
+
matplotlib
|
6 |
+
transformers
|
7 |
+
huggingface_hub
|
8 |
+
|