Spaces:
No application file
No application file
firts_commit
Browse files
S_A_Front
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#vader-lexicon model with NLTK
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import tkinter as tk
|
5 |
+
from tkinter import messagebox
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
model_id = "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual"
|
9 |
+
classifier = pipeline("sentiment-analysis", model=model_id)
|
10 |
+
|
11 |
+
def process_string(input_string):
|
12 |
+
result = classifier(input_string)
|
13 |
+
if result[0]['label'] == 'positive':
|
14 |
+
return 'This comment is: positive 😃'
|
15 |
+
elif result[0]['label'] == 'negative':
|
16 |
+
return 'This comment is: negative 😒'
|
17 |
+
else:
|
18 |
+
return 'This comment is: positive 😃'
|
19 |
+
|
20 |
+
def process_input():
|
21 |
+
input_string = entry.get()
|
22 |
+
if input_string.strip() == "":
|
23 |
+
messagebox.showerror("Error", "Please enter a text.")
|
24 |
+
else:
|
25 |
+
processed_string = process_string(input_string)
|
26 |
+
messagebox.showinfo("Sentiment", f"Comment: {input_string}\n{processed_string}")
|
27 |
+
# Create the main application window
|
28 |
+
root = tk.Tk()
|
29 |
+
root.title("Sentiment Analyser: Hugging face 😃😒")
|
30 |
+
|
31 |
+
# Set the size of the window
|
32 |
+
root.geometry("500x100")
|
33 |
+
|
34 |
+
# Create and place widgets
|
35 |
+
label = tk.Label(root, text="Enter a text:")
|
36 |
+
label.pack()
|
37 |
+
|
38 |
+
entry = tk.Entry(root, width=80)
|
39 |
+
entry.pack()
|
40 |
+
|
41 |
+
button = tk.Button(root, text="Process", command=process_input, bg='green', fg='white')
|
42 |
+
button.pack()
|
43 |
+
|
44 |
+
# Run the Tkinter event loop
|
45 |
+
root.mainloop()
|