Spaces:
No application file
No application file
Delete mistral_model.py
Browse files- mistral_model.py +0 -85
mistral_model.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
import warnings
|
2 |
-
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
-
from transformers.models.mistral.modeling_mistral import MistralForCausalLM
|
5 |
-
from transformers.models.llama.tokenization_llama_fast import LlamaTokenizerFast
|
6 |
-
|
7 |
-
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
8 |
-
|
9 |
-
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
10 |
-
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
12 |
-
|
13 |
-
from langchain.llms.base import LLM
|
14 |
-
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
15 |
-
from typing import Optional, List, Mapping, Any
|
16 |
-
|
17 |
-
class CustomLLMMistral(LLM):
|
18 |
-
model: MistralForCausalLM
|
19 |
-
tokenizer: LlamaTokenizerFast
|
20 |
-
|
21 |
-
@property
|
22 |
-
def _llm_type(self) -> str:
|
23 |
-
return "custom"
|
24 |
-
|
25 |
-
def _call(self, prompt: str, stop: Optional[List[str]] = None,
|
26 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None) -> str:
|
27 |
-
|
28 |
-
messages = [
|
29 |
-
{"role": "user", "content": prompt},
|
30 |
-
]
|
31 |
-
|
32 |
-
encodeds = self.tokenizer.apply_chat_template(messages, return_tensors="pt")
|
33 |
-
model_inputs = encodeds.to(self.model.device)
|
34 |
-
|
35 |
-
generated_ids = self.model.generate(model_inputs, max_new_tokens=512, do_sample=True, pad_token_id=tokenizer.eos_token_id, top_k=4, temperature=0.7)
|
36 |
-
decoded = self.tokenizer.batch_decode(generated_ids)
|
37 |
-
|
38 |
-
output = decoded[0].split("[/INST]")[1].replace("</s>", "").strip()
|
39 |
-
|
40 |
-
if stop is not None:
|
41 |
-
for word in stop:
|
42 |
-
output = output.split(word)[0].strip()
|
43 |
-
|
44 |
-
while not output.endswith("```"):
|
45 |
-
output += "`"
|
46 |
-
|
47 |
-
return output
|
48 |
-
|
49 |
-
@property
|
50 |
-
def _identifying_params(self) -> Mapping[str, Any]:
|
51 |
-
return {"model": self.model}
|
52 |
-
|
53 |
-
llm = CustomLLMMistral(model=model, tokenizer=tokenizer)
|
54 |
-
|
55 |
-
import numexpr as ne
|
56 |
-
from langchain.tools import WikipediaQueryRun, BaseTool
|
57 |
-
from langchain_community.utilities import WikipediaAPIWrapper
|
58 |
-
|
59 |
-
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=2500))
|
60 |
-
|
61 |
-
print(wikipedia.run("Deep Learning"))
|
62 |
-
|
63 |
-
|
64 |
-
wikipedia_tool = Tool(
|
65 |
-
name="wikipedia",
|
66 |
-
description="Never search for more than one concept at a single step. If you need to compare two concepts, search for each one individually. Syntax: string with a simple concept",
|
67 |
-
func=wikipedia.run
|
68 |
-
)
|
69 |
-
|
70 |
-
class Calculator(BaseTool):
|
71 |
-
name = "calculator"
|
72 |
-
description = "Use this tool for math operations. It requires numexpr syntax. Use it always you need to solve any math operation. Be sure syntax is correct."
|
73 |
-
|
74 |
-
def _run(self, expression: str):
|
75 |
-
try:
|
76 |
-
return ne.evaluate(expression).item()
|
77 |
-
except Exception:
|
78 |
-
return "This is not a numexpr valid syntax. Try a different syntax."
|
79 |
-
|
80 |
-
def _arun(self, radius: int):
|
81 |
-
raise NotImplementedError("This tool does not support async")
|
82 |
-
|
83 |
-
calculator_tool = Calculator()
|
84 |
-
|
85 |
-
calculator_tool.run("2+3")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|