Traly's picture
init
193c713
import glob
import os
import re
import subprocess
from collections import OrderedDict
import lpips
import numpy as np
import torch
import torch.distributed as dist
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
from .matlab_resize import imresize
def reduce_tensors(metrics):
new_metrics = {}
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
dist.all_reduce(v)
v = v / dist.get_world_size()
if type(v) is dict:
v = reduce_tensors(v)
new_metrics[k] = v
return new_metrics
def tensors_to_scalars(tensors):
if isinstance(tensors, torch.Tensor):
tensors = tensors.item()
return tensors
elif isinstance(tensors, dict):
new_tensors = {}
for k, v in tensors.items():
v = tensors_to_scalars(v)
new_tensors[k] = v
return new_tensors
elif isinstance(tensors, list):
return [tensors_to_scalars(v) for v in tensors]
else:
return tensors
def tensors_to_np(tensors):
if isinstance(tensors, dict):
new_np = {}
for k, v in tensors.items():
if isinstance(v, torch.Tensor):
v = v.cpu().numpy()
if type(v) is dict:
v = tensors_to_np(v)
new_np[k] = v
elif isinstance(tensors, list):
new_np = []
for v in tensors:
if isinstance(v, torch.Tensor):
v = v.cpu().numpy()
if type(v) is dict:
v = tensors_to_np(v)
new_np.append(v)
elif isinstance(tensors, torch.Tensor):
v = tensors
if isinstance(v, torch.Tensor):
v = v.cpu().numpy()
if type(v) is dict:
v = tensors_to_np(v)
new_np = v
else:
raise Exception(f'tensors_to_np does not support type {type(tensors)}.')
return new_np
def move_to_cpu(tensors):
ret = {}
for k, v in tensors.items():
if isinstance(v, torch.Tensor):
v = v.cpu()
if type(v) is dict:
v = move_to_cpu(v)
ret[k] = v
return ret
def move_to_cuda(batch, gpu_id=0):
# base case: object can be directly moved using `cuda` or `to`
if callable(getattr(batch, 'cuda', None)):
return batch.cuda(gpu_id, non_blocking=True)
elif callable(getattr(batch, 'to', None)):
return batch.to(torch.device('cuda', gpu_id), non_blocking=True)
elif isinstance(batch, list):
for i, x in enumerate(batch):
batch[i] = move_to_cuda(x, gpu_id)
return batch
elif isinstance(batch, tuple):
batch = list(batch)
for i, x in enumerate(batch):
batch[i] = move_to_cuda(x, gpu_id)
return tuple(batch)
elif isinstance(batch, dict):
for k, v in batch.items():
batch[k] = move_to_cuda(v, gpu_id)
return batch
return batch
def get_last_checkpoint(work_dir, steps=None):
checkpoint = None
last_ckpt_path = None
ckpt_paths = get_all_ckpts(work_dir, steps)
if len(ckpt_paths) > 0:
last_ckpt_path = ckpt_paths[0]
checkpoint = torch.load(last_ckpt_path, map_location='cpu')
return checkpoint, last_ckpt_path
def get_all_ckpts(work_dir, steps=None):
if steps is None:
ckpt_path_pattern = f'{work_dir}/model_ckpt_steps_*.ckpt'
else:
ckpt_path_pattern = f'{work_dir}/model_ckpt_steps_{steps}.ckpt'
return sorted(glob.glob(ckpt_path_pattern),
key=lambda x: -int(re.findall('.*steps\_(\d+)\.ckpt', x)[0]))
def load_checkpoint(model, optimizer, work_dir, steps=None):
checkpoint, last_ckpt_path = get_last_checkpoint(work_dir, steps)
print(f'loding check from: {last_ckpt_path}')
if checkpoint is not None:
stat_dict = checkpoint['state_dict']['model']
new_state_dict = OrderedDict()
for k, v in stat_dict.items():
if k[:7] == 'module.':
k = k[7:] # εŽ»ζŽ‰ `module.`
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
model.cuda()
optimizer.load_state_dict(checkpoint['optimizer_states'][0])
training_step = checkpoint['global_step']
del checkpoint
torch.cuda.empty_cache()
else:
training_step = 0
model.cuda()
return training_step
def save_checkpoint(model, optimizer, work_dir, global_step, num_ckpt_keep):
ckpt_path = f'{work_dir}/model_ckpt_steps_{global_step}.ckpt'
print(f'Step@{global_step}: saving model to {ckpt_path}')
checkpoint = {'global_step': global_step}
optimizer_states = []
optimizer_states.append(optimizer.state_dict())
checkpoint['optimizer_states'] = optimizer_states
checkpoint['state_dict'] = {'model': model.state_dict()}
torch.save(checkpoint, ckpt_path, _use_new_zipfile_serialization=False)
for old_ckpt in get_all_ckpts(work_dir)[num_ckpt_keep:]:
remove_file(old_ckpt)
print(f'Delete ckpt: {os.path.basename(old_ckpt)}')
def remove_file(*fns):
for f in fns:
subprocess.check_call(f'rm -rf "{f}"', shell=True)
def plot_img(img):
img = img.data.cpu().numpy()
return np.clip(img, 0, 1)
def load_ckpt(cur_model, ckpt_base_dir, model_name='model', force=True, strict=True):
if os.path.isfile(ckpt_base_dir):
base_dir = os.path.dirname(ckpt_base_dir)
ckpt_path = ckpt_base_dir
checkpoint = torch.load(ckpt_base_dir, map_location='cpu')
else:
base_dir = ckpt_base_dir
checkpoint, ckpt_path = get_last_checkpoint(ckpt_base_dir)
if checkpoint is not None:
state_dict = checkpoint["state_dict"]
if len([k for k in state_dict.keys() if '.' in k]) > 0:
state_dict = {k[len(model_name) + 1:]: v for k, v in state_dict.items()
if k.startswith(f'{model_name}.')}
else:
state_dict = state_dict[model_name]
if not strict:
cur_model_state_dict = cur_model.state_dict()
unmatched_keys = []
for key, param in state_dict.items():
if key in cur_model_state_dict:
new_param = cur_model_state_dict[key]
if new_param.shape != param.shape:
unmatched_keys.append(key)
print("| Unmatched keys: ", key, new_param.shape, param.shape)
for key in unmatched_keys:
del state_dict[key]
cur_model.load_state_dict(state_dict, strict=strict)
print(f"| load '{model_name}' from '{ckpt_path}'.")
else:
e_msg = f"| ckpt not found in {base_dir}."
if force:
assert False, e_msg
else:
print(e_msg)
class Measure:
def __init__(self, net='alex'):
self.model = lpips.LPIPS(net=net)
def measure(self, imgA, imgB, img_lr, sr_scale):
"""
Args:
imgA: [C, H, W] uint8 or torch.FloatTensor [-1,1]
imgB: [C, H, W] uint8 or torch.FloatTensor [-1,1]
img_lr: [C, H, W] uint8 or torch.FloatTensor [-1,1]
sr_scale:
Returns: dict of metrics
"""
if isinstance(imgA, torch.Tensor):
imgA = np.round((imgA.cpu().numpy() + 1) * 127.5).clip(min=0, max=255).astype(np.uint8)
imgB = np.round((imgB.cpu().numpy() + 1) * 127.5).clip(min=0, max=255).astype(np.uint8)
img_lr = np.round((img_lr.cpu().numpy() + 1) * 127.5).clip(min=0, max=255).astype(np.uint8)
imgA = imgA.transpose(1, 2, 0)
imgA_lr = imresize(imgA, 1 / sr_scale)
imgB = imgB.transpose(1, 2, 0)
img_lr = img_lr.transpose(1, 2, 0)
psnr = self.psnr(imgA, imgB)
ssim = self.ssim(imgA, imgB)
lpips = self.lpips(imgA, imgB)
lr_psnr = self.psnr(imgA_lr, img_lr)
res = {'psnr': psnr, 'ssim': ssim, 'lpips': lpips, 'lr_psnr': lr_psnr}
return {k: float(v) for k, v in res.items()}
def lpips(self, imgA, imgB, model=None):
device = next(self.model.parameters()).device
tA = t(imgA).to(device)
tB = t(imgB).to(device)
dist01 = self.model.forward(tA, tB).item()
return dist01
def ssim(self, imgA, imgB):
score, diff = ssim(imgA, imgB, full=True, channel_axis=2, data_range=255)
return score
def psnr(self, imgA, imgB):
return psnr(imgA, imgB, data_range=255)
def t(img):
def to_4d(img):
assert len(img.shape) == 3
img_new = np.expand_dims(img, axis=0)
assert len(img_new.shape) == 4
return img_new
def to_CHW(img):
return np.transpose(img, [2, 0, 1])
def to_tensor(img):
return torch.Tensor(img)
return to_tensor(to_4d(to_CHW(img))) / 127.5 - 1