File size: 15,432 Bytes
193c713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import importlib
import json
import os
import subprocess
import sys
from collections import OrderedDict
from pathlib import Path

parent_path = Path(__file__).absolute().parent.parent
sys.path.append(os.path.abspath(parent_path))
os.chdir(parent_path)
print(f'>-------------> parent path {parent_path}')
print(f'>-------------> current work dir {os.getcwd()}')

cache_path = os.path.join(parent_path, 'cache')
os.environ["HF_DATASETS_CACHE"] = cache_path
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["torch_HOME"] = cache_path

import torch
from PIL import Image
from tqdm import tqdm
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from sam_diffsr.utils_sr.hparams import hparams, set_hparams
from sam_diffsr.utils_sr.utils import plot_img, move_to_cuda, load_checkpoint, save_checkpoint, tensors_to_scalars, Measure, \
    get_all_ckpts



class Trainer:
    def __init__(self):
        self.logger = self.build_tensorboard(save_dir=hparams['work_dir'], name='tb_logs')
        self.measure = Measure()
        self.dataset_cls = None
        self.metric_keys = ['psnr', 'ssim', 'lpips', 'lr_psnr']
        self.metric_2_keys = ['psnr-Y', 'ssim', 'fid']
        self.work_dir = hparams['work_dir']
        self.first_val = True
        
        self.val_steps = hparams['val_steps']
    
    def build_tensorboard(self, save_dir, name, **kwargs):
        log_dir = os.path.join(save_dir, name)
        os.makedirs(log_dir, exist_ok=True)
        return SummaryWriter(log_dir=log_dir, **kwargs)
    
    def build_train_dataloader(self):
        dataset = self.dataset_cls('train')
        return torch.utils.data.DataLoader(
                dataset, batch_size=hparams['batch_size'], shuffle=True,
                pin_memory=False, num_workers=hparams['num_workers'])
    
    def build_val_dataloader(self):
        return torch.utils.data.DataLoader(
                self.dataset_cls('valid'), batch_size=hparams['eval_batch_size'], shuffle=False, pin_memory=False)
    
    def build_test_dataloader(self):
        return torch.utils.data.DataLoader(
                self.dataset_cls('test'), batch_size=hparams['eval_batch_size'], shuffle=False, pin_memory=False)
    
    def build_model(self):
        raise NotImplementedError
    
    def sample_and_test(self, sample):
        raise NotImplementedError
    
    def build_optimizer(self, model):
        raise NotImplementedError
    
    def build_scheduler(self, optimizer):
        raise NotImplementedError
    
    def training_step(self, batch):
        raise NotImplementedError
    
    def train(self):
        model = self.build_model()
        optimizer = self.build_optimizer(model)
        self.global_step = training_step = load_checkpoint(model, optimizer, hparams['work_dir'], steps=self.val_steps)
        self.scheduler = scheduler = self.build_scheduler(optimizer)
        scheduler.step(training_step)
        dataloader = self.build_train_dataloader()
        
        train_pbar = tqdm(dataloader, initial=training_step, total=float('inf'),
                          dynamic_ncols=True, unit='step')
        while self.global_step < hparams['max_updates']:
            for batch in train_pbar:
                if training_step % hparams['val_check_interval'] == 0:
                    with torch.no_grad():
                        model.eval()
                        self.validate(training_step)
                    save_checkpoint(model, optimizer, self.work_dir, training_step, hparams['num_ckpt_keep'])
                model.train()
                batch = move_to_cuda(batch)
                losses, total_loss = self.training_step(batch)
                optimizer.zero_grad()
                
                total_loss.backward()
                optimizer.step()
                training_step += 1
                scheduler.step(training_step)
                self.global_step = training_step
                if training_step % 100 == 0:
                    self.log_metrics({f'tr/{k}': v for k, v in losses.items()}, training_step)
                train_pbar.set_postfix(**tensors_to_scalars(losses))
    
    def validate(self, training_step):
        val_dataloader = self.build_val_dataloader()
        pbar = tqdm(enumerate(val_dataloader), total=len(val_dataloader))
        metrics = {}
        for batch_idx, batch in pbar:
            # 每次运行的第一次validation只跑一小部分数据,来验证代码能否跑通
            if self.first_val and batch_idx > hparams['num_sanity_val_steps'] - 1:
                break
            batch = move_to_cuda(batch)
            img, rrdb_out, ret = self.sample_and_test(batch)
            img_hr = batch['img_hr']
            img_lr = batch['img_lr']
            img_lr_up = batch['img_lr_up']
            if img is not None:
                self.logger.add_image(f'Pred_{batch_idx}', plot_img(img[0]), self.global_step)
                if hparams.get('aux_l1_loss'):
                    self.logger.add_image(f'rrdb_out_{batch_idx}', plot_img(rrdb_out[0]), self.global_step)
                if self.global_step <= hparams['val_check_interval']:
                    self.logger.add_image(f'HR_{batch_idx}', plot_img(img_hr[0]), self.global_step)
                    self.logger.add_image(f'LR_{batch_idx}', plot_img(img_lr[0]), self.global_step)
                    self.logger.add_image(f'BL_{batch_idx}', plot_img(img_lr_up[0]), self.global_step)
            metrics = {}
            metrics.update({k: np.mean(ret[k]) for k in self.metric_keys})
            pbar.set_postfix(**tensors_to_scalars(metrics))
        if hparams['infer']:
            print('Val results:', metrics)
        else:
            if not self.first_val:
                self.log_metrics({f'val/{k}': v for k, v in metrics.items()}, training_step)
                print('Val results:', metrics)
            else:
                print('Sanity val results:', metrics)
        self.first_val = False
    
    def build_test_my_dataloader(self, data_name):
        return torch.utils.data.DataLoader(
                self.dataset_cls(data_name), batch_size=hparams['eval_batch_size'], shuffle=False, pin_memory=False)
    
    def benchmark(self, benchmark_name_list, metric_list):
        from sam_diffsr.tools.caculate_iqa import eval_img_IQA

        model = self.build_model()
        optimizer = self.build_optimizer(model)
        training_step = load_checkpoint(model, optimizer, hparams['work_dir'], hparams['val_steps'])
        self.global_step = training_step
        
        optimizer = None
        
        for data_name in benchmark_name_list:
            test_dataloader = self.build_test_my_dataloader(data_name)
            
            self.results = {k: 0 for k in self.metric_keys}
            self.n_samples = 0
            self.gen_dir = f"{hparams['work_dir']}/results_{self.global_step}_{hparams['gen_dir_name']}/benchmark/{data_name}"
            if hparams['test_save_png']:
                subprocess.check_call(f'rm -rf {self.gen_dir}', shell=True)
                os.makedirs(f'{self.gen_dir}/outputs', exist_ok=True)
                os.makedirs(f'{self.gen_dir}/SR', exist_ok=True)
            
            self.model.sample_tqdm = False
            torch.backends.cudnn.benchmark = False
            if hparams['test_save_png']:
                if hasattr(self.model.denoise_fn, 'make_generation_fast_'):
                    self.model.denoise_fn.make_generation_fast_()
                os.makedirs(f'{self.gen_dir}/HR', exist_ok=True)
            
            result_dict = {}
            
            with torch.no_grad():
                model.eval()
                pbar = tqdm(enumerate(test_dataloader), total=len(test_dataloader))
                for batch_idx, batch in pbar:
                    move_to_cuda(batch)
                    gen_dir = self.gen_dir
                    item_names = batch['item_name']
                    img_hr = batch['img_hr']
                    img_lr = batch['img_lr']
                    img_lr_up = batch['img_lr_up']
                    
                    res = self.sample_and_test(batch)
                    if len(res) == 3:
                        img_sr, rrdb_out, ret = res
                    else:
                        img_sr, ret = res
                        rrdb_out = img_sr
                    
                    img_lr_up = batch.get('img_lr_up', img_lr_up)
                    if img_sr is not None:
                        metrics = list(self.metric_keys)
                        result_dict[batch['item_name'][0]] = {}
                        for k in metrics:
                            self.results[k] += ret[k]
                            result_dict[batch['item_name'][0]][k] = ret[k]
                        self.n_samples += ret['n_samples']
                        
                        print({k: round(self.results[k] / self.n_samples, 3) for k in self.results}, 'total:',
                              self.n_samples)
                        
                        if hparams['test_save_png'] and img_sr is not None:
                            img_sr = self.tensor2img(img_sr)
                            img_hr = self.tensor2img(img_hr)
                            img_lr = self.tensor2img(img_lr)
                            img_lr_up = self.tensor2img(img_lr_up)
                            rrdb_out = self.tensor2img(rrdb_out)
                            for item_name, hr_p, hr_g, lr, lr_up, rrdb_o in zip(
                                    item_names, img_sr, img_hr, img_lr, img_lr_up, rrdb_out):
                                item_name = os.path.splitext(item_name)[0]
                                hr_p = Image.fromarray(hr_p)
                                hr_g = Image.fromarray(hr_g)
                                hr_p.save(f"{gen_dir}/SR/{item_name}.png")
                                hr_g.save(f"{gen_dir}/HR/{item_name}.png")
            
            exp_name = hparams['work_dir'].split('/')[-1]
            sr_img_dir = f"{gen_dir}/SR/"
            gt_img_dir = f"{gen_dir}/HR/"
            excel_path = f"{hparams['work_dir']}/IQA-val-benchmark-{exp_name}.xlsx"
            epoch = training_step
            eval_img_IQA(gt_img_dir, sr_img_dir, excel_path, metric_list, epoch, data_name)
            
            os.makedirs(f'{self.gen_dir}', exist_ok=True)
            eval_json_path = os.path.join(self.gen_dir, 'eval.json')
            avg_result = {k: round(self.results[k] / self.n_samples, 4) for k in self.results}
            with open(eval_json_path, 'w+') as file:
                json.dump(avg_result, file, sort_keys=True, indent=4, separators=(',', ': '), ensure_ascii=False)
                json.dump(result_dict, file, sort_keys=True, indent=4, separators=(',', ': '), ensure_ascii=False)
    
    def benchmark_loop(self, benchmark_name_list, metric_list, gt_path):
        # infer and evaluation all save checkpoint
        from sam_diffsr.tools.caculate_iqa import eval_img_IQA
        
        model = self.build_model()
        
        def get_checkpoint(model, checkpoint):
            stat_dict = checkpoint['state_dict']['model']
            
            new_state_dict = OrderedDict()
            for k, v in stat_dict.items():
                if k[:7] == 'module.':
                    k = k[7:]  # 去掉 `module.`
                new_state_dict[k] = v
            
            model.load_state_dict(new_state_dict)
            model.cuda()
            training_step = checkpoint['global_step']
            del checkpoint
            torch.cuda.empty_cache()
            
            return training_step
        
        ckpt_paths = get_all_ckpts(hparams['work_dir'])
        for ckpt_path in ckpt_paths:
            checkpoint = torch.load(ckpt_path, map_location='cpu')
            training_step = get_checkpoint(model, checkpoint)
            
            self.global_step = training_step
            
            for data_name in benchmark_name_list:
                test_dataloader = self.build_test_my_dataloader(data_name)
                
                self.results = {k: 0 for k in self.metric_keys + self.metric_2_keys}
                self.n_samples = 0
                self.gen_dir = f"{hparams['work_dir']}/results_{training_step}_{hparams['gen_dir_name']}/benchmark/{data_name}"
                
                os.makedirs(f'{self.gen_dir}/outputs', exist_ok=True)
                os.makedirs(f'{self.gen_dir}/SR', exist_ok=True)
                
                self.model.sample_tqdm = False
                torch.backends.cudnn.benchmark = False
                
                with torch.no_grad():
                    model.eval()
                    pbar = tqdm(enumerate(test_dataloader), total=len(test_dataloader))
                    for batch_idx, batch in pbar:
                        move_to_cuda(batch)
                        gen_dir = self.gen_dir
                        item_names = batch['item_name']
                        
                        res = self.sample_and_test(batch)
                        if len(res) == 3:
                            img_sr, rrdb_out, ret = res
                        else:
                            img_sr, ret = res
                            rrdb_out = img_sr
                        
                        img_sr = self.tensor2img(img_sr)
                        
                        for item_name, hr_p in zip(item_names, img_sr):
                            item_name = os.path.splitext(item_name)[0]
                            hr_p = Image.fromarray(hr_p)
                            hr_p.save(f"{gen_dir}/SR/{item_name}.png")
                
                exp_name = hparams['work_dir'].split('/')[-1]
                sr_img_dir = f"{gen_dir}/SR/"
                gt_img_dir = f"{gt_path}/{data_name}/HR"
                excel_path = f"{hparams['work_dir']}/IQA-val-benchmark_loop-{exp_name}.xlsx"
                epoch = training_step
                eval_img_IQA(gt_img_dir, sr_img_dir, excel_path, metric_list, epoch, data_name)
    
    # utils_sr
    def log_metrics(self, metrics, step):
        metrics = self.metrics_to_scalars(metrics)
        logger = self.logger
        for k, v in metrics.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            logger.add_scalar(k, v, step)
    
    def metrics_to_scalars(self, metrics):
        new_metrics = {}
        for k, v in metrics.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            
            if type(v) is dict:
                v = self.metrics_to_scalars(v)
            
            new_metrics[k] = v
        
        return new_metrics
    
    @staticmethod
    def tensor2img(img):
        img = np.round((img.permute(0, 2, 3, 1).cpu().numpy() + 1) * 127.5)
        img = img.clip(min=0, max=255).astype(np.uint8)
        return img


if __name__ == '__main__':
    set_hparams()
    
    pkg = ".".join(hparams["trainer_cls"].split(".")[:-1])
    cls_name = hparams["trainer_cls"].split(".")[-1]
    trainer = getattr(importlib.import_module(pkg), cls_name)()
    if hparams['benchmark_loop']:
        trainer.benchmark_loop(hparams['benchmark_name_list'], hparams['metric_list'], hparams['gt_img_path'])
    elif hparams['benchmark']:
        trainer.benchmark(hparams['benchmark_name_list'], hparams['metric_list'])
    else:
        trainer.train()