File size: 4,279 Bytes
193c713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import random

import numpy as np
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms

from sam_diffsr.tasks.srdiff import SRDiffTrainer
from sam_diffsr.utils_sr.dataset import SRDataSet
from sam_diffsr.utils_sr.hparams import hparams
from sam_diffsr.utils_sr.matlab_resize import imresize


class InferDataSet(Dataset):
    def __init__(self, img_dir):
        super().__init__()
        
        self.img_path_list = [os.path.join(img_dir, img_name) for img_name in os.listdir(img_dir)]
        self.to_tensor_norm = transforms.Compose([
                transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    
    def __getitem__(self, index):
        sr_scale = hparams['sr_scale']
        
        img_path = self.img_path_list[index]
        img_name = os.path.basename(img_path)
        
        img_lr = Image.open(img_path).convert('RGB')
        img_lr = np.uint8(np.asarray(img_lr))
        
        h, w, c = img_lr.shape
        h, w = h * sr_scale, w * sr_scale
        h = h - h % (sr_scale * 2)
        w = w - w % (sr_scale * 2)
        h_l = h // sr_scale
        w_l = w // sr_scale
        
        img_lr = img_lr[:h_l, :w_l]
        
        img_lr_up = imresize(img_lr / 256, hparams['sr_scale'])  # np.float [H, W, C]
        img_lr, img_lr_up = [self.to_tensor_norm(x).float() for x in [img_lr, img_lr_up]]
        
        return img_lr, img_lr_up, img_name
    
    def __len__(self):
        return len(self.img_path_list)


class Df2kDataSet(SRDataSet):
    def __init__(self, prefix='train'):
        if prefix == 'valid':
            _prefix = 'test'
        else:
            _prefix = prefix
        
        super().__init__(_prefix)
        self.patch_size = hparams['patch_size']
        self.patch_size_lr = hparams['patch_size'] // hparams['sr_scale']
        if prefix == 'valid':
            self.len = hparams['eval_batch_size'] * hparams['valid_steps']
        
        self.data_aug_transforms = transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.RandomRotation(20, resample=Image.BICUBIC),
                transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
        ])
    
    def __getitem__(self, index):
        item = self._get_item(index)
        hparams = self.hparams
        sr_scale = hparams['sr_scale']
        
        img_hr = np.uint8(item['img'])
        img_lr = np.uint8(item['img_lr'])
        
        # TODO: clip for SRFlow
        h, w, c = img_hr.shape
        h = h - h % (sr_scale * 2)
        w = w - w % (sr_scale * 2)
        h_l = h // sr_scale
        w_l = w // sr_scale
        img_hr = img_hr[:h, :w]
        img_lr = img_lr[:h_l, :w_l]
        # random crop
        if self.prefix == 'train':
            if self.data_augmentation and random.random() < 0.5:
                img_hr, img_lr = self.data_augment(img_hr, img_lr)
            i = random.randint(0, h - self.patch_size) // sr_scale * sr_scale
            i_lr = i // sr_scale
            j = random.randint(0, w - self.patch_size) // sr_scale * sr_scale
            j_lr = j // sr_scale
            img_hr = img_hr[i:i + self.patch_size, j:j + self.patch_size]
            img_lr = img_lr[i_lr:i_lr + self.patch_size_lr, j_lr:j_lr + self.patch_size_lr]
        img_lr_up = imresize(img_lr / 256, hparams['sr_scale'])  # np.float [H, W, C]
        img_hr, img_lr, img_lr_up = [self.to_tensor_norm(x).float() for x in [img_hr, img_lr, img_lr_up]]
        return {
                'img_hr': img_hr, 'img_lr': img_lr,
                'img_lr_up': img_lr_up, 'item_name': item['item_name'],
                'loc': np.array(item['loc']), 'loc_bdr': np.array(item['loc_bdr'])
        }
    
    def __len__(self):
        return self.len
    
    def data_augment(self, img_hr, img_lr):
        sr_scale = self.hparams['sr_scale']
        img_hr = Image.fromarray(img_hr)
        img_hr = self.data_aug_transforms(img_hr)
        img_hr = np.asarray(img_hr)  # np.uint8 [H, W, C]
        img_lr = imresize(img_hr, 1 / sr_scale)
        return img_hr, img_lr


class SRDiffDf2k(SRDiffTrainer):
    def __init__(self):
        super().__init__()
        self.dataset_cls = Df2kDataSet