Spaces:
Paused
Paused
| from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM | |
| from peft import PeftModel, PeftConfig | |
| import torch | |
| import gradio as gr | |
| import random | |
| from textwrap import wrap | |
| EXAMPLES = [ | |
| ["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"], | |
| ["What's the Everett interpretation of quantum mechanics?"], | |
| ["Give me a list of the top 10 dive sites you would recommend around the world."], | |
| ["Can you tell me more about deep-water soloing?"], | |
| ["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"] | |
| ] | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| base_model_id = "tiiuae/falcon-7b-instruct" | |
| model_directory = "Tonic/GaiaMiniMed" | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left") | |
| model_config = AutoConfig.from_pretrained(base_model_id) | |
| peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config) | |
| peft_model = PeftModel.from_pretrained(peft_model, model_directory) | |
| def format_prompt(message, history, system_prompt): | |
| prompt = "" | |
| if system_prompt: | |
| prompt += f"System: {system_prompt}\n" | |
| for user_prompt, bot_response in history: | |
| prompt += f"User: {user_prompt}\n" | |
| prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: " | |
| prompt += f"""User: {message} | |
| Falcon:""" | |
| return prompt | |
| seed = 42 | |
| def generate( | |
| prompt, history, system_prompt="", temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0, | |
| ): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| global seed | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=1.0, | |
| stop_sequences="[END]", | |
| do_sample=True, | |
| seed=seed, | |
| ) | |
| seed = seed + 1 | |
| formatted_prompt = format_prompt(prompt, history, system_prompt) | |
| try: | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| for stop_str in STOP_SEQUENCES: | |
| if output.endswith(stop_str): | |
| output = output[:-len(stop_str)] | |
| output = output.rstrip() | |
| yield output | |
| yield output | |
| except Exception as e: | |
| raise gr.Error(f"Error while generating: {e}") | |
| return output | |
| additional_inputs=[ | |
| gr.Textbox("", label="Optional system prompt"), | |
| gr.Slider( | |
| label="Temperature", | |
| value=0.9, | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values produce more diverse outputs", | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| value=256, | |
| minimum=0, | |
| maximum=3000, | |
| step=64, | |
| interactive=True, | |
| info="The maximum numbers of new tokens", | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| value=0.90, | |
| minimum=0.01, | |
| maximum=0.99, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values sample more low-probability tokens", | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| value=1.2, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ) | |
| ] | |
| with gr.Blocks() as demo: | |
| title = "👋🏻Welcome to Tonic's GaiaMiniMed🦅⚕️Falcon Chat🚀" | |
| description = "You can use this Space to test out the current model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) with chat memory optimized for falcon models. or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." | |
| gr.ChatInterface( | |
| generate, | |
| examples=EXAMPLES, | |
| additional_inputs=additional_inputs, | |
| ) | |
| demo.queue(concurrency_count=100, api_open=False).launch(show_api=False) | |