Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,079 Bytes
2a01fa1 7f73a1c 2a01fa1 5d6783e 2a01fa1 5d6783e 74d6bf5 5d6783e 58755ce 5d6783e 58755ce 5d6783e 03948e3 5d6783e 03948e3 5d6783e 58755ce 5d6783e 7f73a1c 5d6783e 7f73a1c 5d6783e 7f73a1c 5d6783e 7f73a1c 5d6783e e7d74c5 7f73a1c e7353da 98a403f e7353da 7f73a1c 582c792 2a01fa1 582c792 2a01fa1 582c792 e7d74c5 582c792 2a01fa1 5d6783e 58755ce 5d6783e 2a01fa1 e7d74c5 5d6783e e7d74c5 5d6783e 2a01fa1 5d6783e 58755ce 2a01fa1 846298d 582c792 846298d 5d6783e 447b558 b8b21a5 846298d 5d6783e 846298d 2a01fa1 5d6783e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import spaces
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import json
LEAN4_DEFAULT_HEADER = "import Mathlib\nimport Aesop\n\nset_option maxHeartbeats 0\n\nopen BigOperators Real Nat Topology Rat\n\n"
title = """# 🙋🏻♂️Welcome to🌟Tonic's🔮Goedel Prover📉
You can build with this endpoint using🔮Goedel-Prover-SFT📉 available here : [Goedel-LM/Goedel-Prover-SFT](https://huggingface.co/Goedel-LM/Goedel-Prover-SFT)."""
def format_prompt(formal_statement, informal_prefix=""):
"""Format the input according to the Lean4 structure"""
return f"Complete the following Lean 4 code with explanatory comments preceding each line of code:\n\n```lean4\n{LEAN4_DEFAULT_HEADER}{informal_prefix}{formal_statement}"
def extract_code(response):
"""Extract code between lean4 code blocks and the model's output"""
try:
# Extract the model's theorem and proof
output_match = re.search(r'theorem.*?end\s*```', response, re.DOTALL)
if output_match:
model_output = output_match.group(0)
else:
model_output = ""
# Extract the initial code setup
setup_match = re.search(r'```lean4\n(.*?)============================', response, re.DOTALL)
if setup_match:
setup_code = setup_match.group(1)
else:
return "None"
# Extract the goal
goal_match = re.search(r'============================\n\s*(.*?)(?:theorem|$)', response, re.DOTALL)
if goal_match:
goal = goal_match.group(1).strip()
else:
goal = ""
# Combine all parts
full_code = (
f"{setup_code.strip()}\n"
f"============================\n"
f"{goal}\n\n"
f"{model_output.strip()}"
)
return full_code
except:
return "None"
# Example problems
unimath1 = """Goal:
X : UU
Y : UU
P : UU
xp : (X → P) → P
yp : (Y → P) → P
X0 : X × Y → P
x : X
============================
(Y → P)"""
unimath2 = """Goal:
R : ring M : module R
============================
(islinear (idfun M))"""
unimath3 = """Goal:
X : UU i : nat b : hProptoType (i < S i) x : Vector X (S i) r : i = i
============================
(pr1 lastelement = pr1 (i,, b))"""
unimath4 = """Goal:
X : dcpo CX : continuous_dcpo_struct X x : pr1hSet X y : pr1hSet X
============================
(x ⊑ y ≃ (∀ i : approximating_family CX x, approximating_family CX x i ⊑ y))"""
additional_info_prompt = "/-Explain using mathematics-/\n"
examples = [
[unimath1, additional_info_prompt, 2500],
[unimath2, additional_info_prompt, 2500],
[unimath3, additional_info_prompt, 2500],
[unimath4, additional_info_prompt, 2500]
]
model_name = "Goedel-LM/Goedel-Prover-SFT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
# Set generation config
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.generation_config.bos_token_id = 100000
model.generation_config.eos_token_id = 100001
model.generation_config.do_sample = True
model.generation_config.temperature = 1.0
model.generation_config.top_p = 0.95
@spaces.GPU
def solve_math_problem(question, informal_prefix, max_tokens):
# Format the prompt using Lean4 structure
prompt = format_prompt(question, informal_prefix)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
attention_mask = torch.ones_like(input_ids)
outputs = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_tokens + input_ids.shape[1],
pad_token_id=model.generation_config.pad_token_id,
temperature=1.0,
top_p=0.95,
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the full code from the response
full_code = extract_code(prompt + result)
# Create output dictionary similar to reference code
output_data = {
"model_input": prompt,
"model_output": result,
"full_code": full_code
}
return json.dumps(output_data, indent=2), full_code
def main():
iface = gr.Interface(
title="# 🙋🏻♂️Welcome to🌟Tonic's🔮Goedel Prover📉",
description="""You can build with this endpoint using🔮Goedel-Prover-SFT📉 available here : [Goedel-LM/Goedel-Prover-SFT](https://huggingface.co/Goedel-LM/Goedel-Prover-SFT). We're using 🤖[introspector/unimath](https://huggingface.co/datasets/introspector/unimath) for cool examples, check it out below ! The demo is still a work in progress and we're looking forward to build downstream tasks that showcase outstanding mathematical reasoning. Have any ideas ? join us below !
You can also use 🔮Goedel Prover📉 by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/Math?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) Math with [introspector](https://huggingface.co/introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
""",
fn=solve_math_problem,
outputs=[
gr.JSON(label="Full Output"),
gr.Code(label="Extracted Lean4 Code", language="python")
],
inputs=[
gr.Textbox(label="🤔Enter your Lean4 formal statement", lines=7),
gr.Textbox(value=additional_info_prompt, label="🪜Optional informal prefix"),
gr.Slider(minimum=150, maximum=2048, value=650, label="🪙Max Tokens")
],
examples=examples
)
iface.launch()
if __name__ == "__main__":
main()
|