Inkuba-0.4B / app.py
Tonic's picture
Update app.py
b48ac18 verified
raw
history blame
2.88 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
title = "# 🙋🏻‍♂️Tonic's ✒️InkubaLM-0.4B"
description = """✒️InkubaLM has been trained from scratch using 1.9 billion tokens of data for five African languages, along with English and French data, totaling 2.4 billion tokens of data. It is capable of understanding and generating content in five African languages: Swahili, Yoruba, Hausa, isiZulu, and isiXhosa, as well as English and French.
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
hf_token = os.getenv("HF_TOKEN")
# Load the model and tokenizer
model_name = "lelapa/InkubaLM-0.4B"
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, use_auth_token=hf_token)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_auth_token=hf_token)
# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def generate_text(prompt, max_length, repetition_penalty):
# Tokenize and generate the text
input_ids = tokenizer(prompt, return_tensors="pt").to(device).input_ids
outputs = model.generate(input_ids,
max_length=max_length,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.eos_token_id)
# Decode the generated tokens and return the result
generated_text = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:], skip_special_tokens=True)[0].strip()
return generated_text
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Enter your prompt here:", placeholder="Today I planned to ...")
max_length = gr.Slider(label="Max Length", minimum=70, maximum=1000, step=50, value=200)
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.1, value=1.2)
submit_button = gr.Button("Generate")
with gr.Column():
output = gr.Textbox(label="✒️Inkuba.4B:")
submit_button.click(generate_text, inputs=[prompt, max_length, repetition_penalty], outputs=output)
# Launch the demo
demo.launch()