Spaces:
Running
Running
File size: 28,868 Bytes
cef4f97 22c7b5b cef4f97 d1d0907 1a87a19 02ff46f 4967985 7dcbad8 4326b14 9cf89ef 63a03ad a33adcb 4326b14 408a931 a33adcb 02ff46f a33adcb 22c7b5b 408a931 17e5ee4 408a931 17e5ee4 408a931 17e5ee4 408a931 17e5ee4 408a931 3b378ec a33adcb 408a931 a33adcb 408a931 a33adcb 408a931 a33adcb 408a931 cef4f97 4326b14 ee4b3d0 fa528ee a33adcb 408a931 a33adcb 408a931 a33adcb 17e5ee4 a33adcb 17e5ee4 a33adcb 408a931 a33adcb 408a931 a33adcb 17e5ee4 a33adcb 17e5ee4 a33adcb fa528ee 4326b14 131353d 4326b14 997a61b 7dcbad8 4326b14 7dcbad8 4326b14 3b378ec fa528ee 9cf89ef 464330e fa528ee 9cf89ef fa528ee a33adcb 408a931 4326b14 a33adcb 408a931 a33adcb 408a931 a33adcb 408a931 a33adcb 408a931 a33adcb 408a931 a33adcb 4326b14 9cf89ef fa528ee cef4f97 ee4b3d0 11f2cf1 cef4f97 11f2cf1 cef4f97 11f2cf1 cef4f97 f35ea73 3497964 d1a7b5b 3497964 eeaf186 d1a7b5b 3497964 d1a7b5b 3497964 d1a7b5b 3497964 d1a7b5b eeaf186 3497964 d1a7b5b eeaf186 d1a7b5b 3497964 eeaf186 d1a7b5b eeaf186 d1a7b5b 3497964 d1a7b5b eeaf186 d1a7b5b 3f89105 3497964 a197908 131353d 8bebde5 80266b2 79ffa77 8bebde5 131353d ee4b3d0 997a61b 4326b14 fa528ee 3df4587 ee4b3d0 02ff46f 4326b14 63a03ad 7dcbad8 4326b14 cef4f97 2cd1f0b 4c630fe ff7a2a0 448bc9b ff7a2a0 4967985 de261b5 448bc9b dfc79d4 3405c5a dfc79d4 3405c5a 4c630fe fa528ee 4c630fe 131353d a197908 131353d 3b378ec 4c630fe fa528ee ee4b3d0 4c630fe 3df4587 4c630fe 02ff46f cef4f97 fa528ee cef4f97 131353d ee4b3d0 cef4f97 fa528ee f34dca6 7dcbad8 07c16b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
import os
import base64
import spaces
import io
from PIL import Image
import numpy as np
import yaml
from pathlib import Path
from globe import title, description, modelinfor, joinus, howto
import uuid
import tempfile
import time
import shutil
import cv2
import re
import warnings
# Check transformers version for compatibility
try:
import transformers
transformers_version = transformers.__version__
print(f"Transformers version: {transformers_version}")
# Check if we need to use legacy cache handling
if transformers_version.startswith(('4.4', '4.5', '4.6')):
USE_LEGACY_CACHE = True
else:
USE_LEGACY_CACHE = False
except:
USE_LEGACY_CACHE = False
# Try to import spaces module for ZeroGPU compatibility
try:
import spaces
SPACES_AVAILABLE = True
except ImportError:
SPACES_AVAILABLE = False
# Create a dummy decorator for local development
def dummy_gpu_decorator(func):
return func
spaces = type('spaces', (), {'GPU': dummy_gpu_decorator})()
# Suppress specific warnings that are known issues with GOT-OCR
warnings.filterwarnings("ignore", message="The attention mask and the pad token id were not set")
warnings.filterwarnings("ignore", message="Setting `pad_token_id` to `eos_token_id`")
warnings.filterwarnings("ignore", message="The attention mask is not set and cannot be inferred")
warnings.filterwarnings("ignore", message="The `seen_tokens` attribute is deprecated")
class ModelCacheManager:
"""
Manages model cache to prevent DynamicCache errors
"""
def __init__(self, model):
self.model = model
self._clear_all_caches()
def _clear_all_caches(self):
"""Clear all possible caches"""
# Clear model cache
if hasattr(self.model, 'clear_cache'):
try:
self.model.clear_cache()
except:
pass
if hasattr(self.model, '_clear_cache'):
try:
self.model._clear_cache()
except:
pass
# Clear transformers cache based on version
try:
if USE_LEGACY_CACHE:
# Legacy cache clearing for older transformers versions
from transformers import GenerationConfig
if hasattr(GenerationConfig, 'clear_cache'):
GenerationConfig.clear_cache()
else:
# New cache clearing for recent transformers versions
try:
from transformers.cache_utils import clear_cache
clear_cache()
except:
pass
# Also try the old method as fallback
try:
from transformers import GenerationConfig
if hasattr(GenerationConfig, 'clear_cache'):
GenerationConfig.clear_cache()
except:
pass
except:
pass
# Clear torch cache
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
except:
pass
def safe_call(self, method_name, *args, **kwargs):
"""Safely call model methods with cache management"""
try:
# First attempt
method = getattr(self.model, method_name)
return method(*args, **kwargs)
except AttributeError as e:
if "get_max_length" in str(e):
# Clear cache and retry
self._clear_all_caches()
try:
return method(*args, **kwargs)
except:
# Try without any cache-related parameters
kwargs_copy = kwargs.copy()
# Remove any cache-related parameters that might cause issues
for key in list(kwargs_copy.keys()):
if 'cache' in key.lower():
del kwargs_copy[key]
return method(*args, **kwargs_copy)
else:
raise e
def direct_call(self, method_name, *args, **kwargs):
"""Direct call bypassing all cache mechanisms"""
try:
# Clear all caches first
self._clear_all_caches()
# Remove any cache-related parameters
kwargs_copy = kwargs.copy()
for key in list(kwargs_copy.keys()):
if 'cache' in key.lower():
del kwargs_copy[key]
# Make the call
method = getattr(self.model, method_name)
return method(*args, **kwargs_copy)
except Exception as e:
# If still failing, try the original safe_call as last resort
return self.safe_call(method_name, *args, **kwargs)
def legacy_call(self, method_name, *args, **kwargs):
"""Legacy call method for older transformers versions"""
try:
# For legacy versions, we need to handle cache differently
kwargs_copy = kwargs.copy()
# Remove any cache-related parameters
for key in list(kwargs_copy.keys()):
if 'cache' in key.lower():
del kwargs_copy[key]
# Clear caches
self._clear_all_caches()
# Make the call
method = getattr(self.model, method_name)
return method(*args, **kwargs_copy)
except Exception as e:
# Fallback to direct call
return self.direct_call(method_name, *args, **kwargs)
def initialize_model_safely():
"""
Safely initialize the GOT-OCR model with proper error handling for ZeroGPU
"""
model_name = 'ucaslcl/GOT-OCR2_0'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
try:
# Initialize tokenizer with proper settings
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
# Set pad token properly
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# Initialize model with proper settings to avoid warnings
model = AutoModel.from_pretrained(
'ucaslcl/GOT-OCR2_0',
trust_remote_code=True,
low_cpu_mem_usage=True,
device_map=device,
use_safetensors=True,
pad_token_id=tokenizer.eos_token_id,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32
)
model = model.eval().to(device)
model.config.pad_token_id = tokenizer.eos_token_id
# Ensure the model has proper tokenizer settings
if hasattr(model, 'config'):
model.config.pad_token_id = tokenizer.eos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
# Create cache manager
cache_manager = ModelCacheManager(model)
return model, tokenizer, cache_manager
except Exception as e:
print(f"Error initializing model: {str(e)}")
# Fallback initialization
try:
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModel.from_pretrained(
'ucaslcl/GOT-OCR2_0',
trust_remote_code=True,
low_cpu_mem_usage=True,
device_map=device,
use_safetensors=True
)
model = model.eval().to(device)
# Create cache manager for fallback model
cache_manager = ModelCacheManager(model)
return model, tokenizer, cache_manager
except Exception as fallback_error:
raise Exception(f"Failed to initialize model: {str(e)}. Fallback also failed: {str(fallback_error)}")
# Initialize model, tokenizer, and cache manager
model, tokenizer, cache_manager = initialize_model_safely()
UPLOAD_FOLDER = "./uploads"
RESULTS_FOLDER = "./results"
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
if not os.path.exists(folder):
os.makedirs(folder)
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def safe_model_chat(model, tokenizer, image_path, **kwargs):
"""
Safe wrapper for model.chat to handle DynamicCache and other compatibility issues
Optimized for ZeroGPU environments
"""
try:
# First attempt: normal call
return model.chat(tokenizer, image_path, **kwargs)
except AttributeError as e:
if "get_max_length" in str(e):
# Try to fix the cache issue by clearing it
try:
# Clear any existing cache
if hasattr(model, 'clear_cache'):
model.clear_cache()
elif hasattr(model, '_clear_cache'):
model._clear_cache()
# Try to clear cache from transformers
try:
from transformers import GenerationConfig
if hasattr(GenerationConfig, 'clear_cache'):
GenerationConfig.clear_cache()
except:
pass
# Retry the call
return model.chat(tokenizer, image_path, **kwargs)
except:
# If still failing, try with different parameters
try:
# Remove any cache-related parameters
kwargs_copy = kwargs.copy()
for key in list(kwargs_copy.keys()):
if 'cache' in key.lower():
del kwargs_copy[key]
return model.chat(tokenizer, image_path, **kwargs_copy)
except:
raise Exception("Model compatibility issue: DynamicCache error. Please try again.")
else:
raise e
except Exception as e:
# Handle other potential issues
if "attention_mask" in str(e).lower():
# Try to handle attention mask issues
try:
return model.chat(tokenizer, image_path, **kwargs)
except:
raise Exception(f"Attention mask error: {str(e)}")
else:
raise e
def safe_model_chat_crop(model, tokenizer, image_path, **kwargs):
"""
Safe wrapper for model.chat_crop to handle DynamicCache and other compatibility issues
Optimized for ZeroGPU environments
"""
try:
# First attempt: normal call
return model.chat_crop(tokenizer, image_path, **kwargs)
except AttributeError as e:
if "get_max_length" in str(e):
# Try to fix the cache issue by clearing it
try:
# Clear any existing cache
if hasattr(model, 'clear_cache'):
model.clear_cache()
elif hasattr(model, '_clear_cache'):
model._clear_cache()
# Try to clear cache from transformers
try:
from transformers import GenerationConfig
if hasattr(GenerationConfig, 'clear_cache'):
GenerationConfig.clear_cache()
except:
pass
# Retry the call
return model.chat_crop(tokenizer, image_path, **kwargs)
except:
# If still failing, try with different parameters
try:
# Remove any cache-related parameters
kwargs_copy = kwargs.copy()
for key in list(kwargs_copy.keys()):
if 'cache' in key.lower():
del kwargs_copy[key]
return model.chat_crop(tokenizer, image_path, **kwargs_copy)
except:
raise Exception("Model compatibility issue: DynamicCache error. Please try again.")
else:
raise e
except Exception as e:
# Handle other potential issues
if "attention_mask" in str(e).lower():
# Try to handle attention mask issues
try:
return model.chat_crop(tokenizer, image_path, **kwargs)
except:
raise Exception(f"Attention mask error: {str(e)}")
else:
raise e
@spaces.GPU()
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
if image is None:
return "Error: No image provided", None, None
unique_id = str(uuid.uuid4())
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
try:
if isinstance(image, dict):
composite_image = image.get("composite")
if composite_image is not None:
if isinstance(composite_image, np.ndarray):
cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR))
elif isinstance(composite_image, Image.Image):
composite_image.save(image_path)
else:
return "Error: Unsupported image format from ImageEditor", None, None
else:
return "Error: No composite image found in ImageEditor output", None, None
elif isinstance(image, np.ndarray):
cv2.imwrite(image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
elif isinstance(image, str):
shutil.copy(image, image_path)
else:
return "Error: Unsupported image format", None, None
# Wrap model calls in try-except to handle DynamicCache errors
try:
if task == "Plain Text OCR":
# Use cache manager for safer calls
try:
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='ocr')
except:
try:
# Fallback to direct call
res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type='ocr')
except:
# Final fallback to legacy call
res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type='ocr')
return res, None, unique_id
else:
if task == "Format Text OCR":
try:
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
except:
try:
res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
except:
res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Box)":
try:
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
except:
try:
res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
except:
res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Color)":
try:
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
except:
try:
res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
except:
res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
elif task == "Multi-crop OCR":
try:
res = cache_manager.safe_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
except:
try:
res = cache_manager.direct_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
except:
res = cache_manager.legacy_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Render Formatted OCR":
try:
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
except:
try:
res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
except:
res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
if os.path.exists(result_path):
with open(result_path, 'r') as f:
html_content = f.read()
return res, html_content, unique_id
else:
return res, None, unique_id
except AttributeError as e:
if "get_max_length" in str(e):
# Handle DynamicCache compatibility issue
return "Error: Model compatibility issue detected. Please try again or contact support.", None, None
else:
raise e
except Exception as e:
return f"Error: {str(e)}", None, None
finally:
if os.path.exists(image_path):
os.remove(image_path)
def update_image_input(task):
if task == "Fine-grained OCR (Color)":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
def update_inputs(task):
if task in ["Plain Text OCR", "Format Text OCR", "Multi-crop OCR", "Render Formatted OCR"]:
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False)
]
elif task == "Fine-grained OCR (Box)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False)
]
elif task == "Fine-grained OCR (Color)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=False),
gr.update(visible=True, choices=["red", "green", "blue"]),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True)
]
def parse_latex_output(res):
# Split the input, preserving newlines and empty lines
lines = re.split(r'(\$\$.*?\$\$)', res, flags=re.DOTALL)
parsed_lines = []
in_latex = False
latex_buffer = []
for line in lines:
if line == '\n':
if in_latex:
latex_buffer.append(line)
else:
parsed_lines.append(line)
continue
line = line.strip()
latex_patterns = [r'\{', r'\}', r'\[', r'\]', r'\\', r'\$', r'_', r'^', r'"']
contains_latex = any(re.search(pattern, line) for pattern in latex_patterns)
if contains_latex:
if not in_latex:
in_latex = True
latex_buffer = ['$$']
latex_buffer.append(line)
else:
if in_latex:
latex_buffer.append('$$')
parsed_lines.extend(latex_buffer)
in_latex = False
latex_buffer = []
parsed_lines.append(line)
if in_latex:
latex_buffer.append('$$')
parsed_lines.extend(latex_buffer)
return '$$\\$$\n'.join(parsed_lines)
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
"""
Main OCR demonstration function that processes images and returns results.
Args:
image (Union[dict, np.ndarray, str, PIL.Image]): Input image in one of these formats: Image component state with keys: path: str | None (Path to local file) url: str | None (Public URL or base64 image) size: int | None (Image size in bytes) orig_name: str | None (Original filename) mime_type: str | None (Image MIME type) is_stream: bool (Always False) meta: dict(str, Any) OR dict: ImageEditor component state with keys: background: filepath | None layers: list[filepath] composite: filepath | None id: str | None OR np.ndarray: Raw image array str: Path to image file PIL.Image: PIL Image object
task (Literal['Plain Text OCR', 'Format Text OCR', 'Fine-grained OCR (Box)', 'Fine-grained OCR (Color)', 'Multi-crop OCR', 'Render Formatted OCR'], default: "Plain Text OCR"): The type of OCR processing to perform: "Plain Text OCR": Basic text extraction without formatting, "Format Text OCR": Text extraction with preserved formatting, "Fine-grained OCR (Box)": Text extraction from specific bounding box regions, "Fine-grained OCR (Color)": Text extraction from regions marked with specific colors, "Multi-crop OCR": Text extraction from multiple cropped regions, "Render Formatted OCR": Text extraction with HTML rendering of formatting
ocr_type (Literal['ocr', 'format'], default: "ocr"):The type of OCR processing to apply: "ocr": Basic text extraction without formatting "format": Text extraction with preserved formatting and structure
ocr_box (str): Bounding box coordinates specifying the region for fine-grained OCR. Format: "x1,y1,x2,y2" where: x1,y1: Top-left corner coordinates ; x2,y2: Bottom-right corner coordinates Example: "100,100,300,200" for a box starting at (100,100) and ending at (300,200)
ocr_color (Literal['red', 'green', 'blue'], default: "red"): Color specification for fine-grained OCR when using color-based region selection: "red": Extract text from regions marked in red "green": Extract text from regions marked in green "blue": Extract text from regions marked in blue
Returns:
tuple: (formatted_result, html_output)
- formatted_result (str): Formatted OCR result text
- html_output (str): HTML visualization if applicable
"""
res, html_content, unique_id = process_image(image, task, ocr_type, ocr_box, ocr_color)
if isinstance(res, str) and res.startswith("Error:"):
return res, None
res = res.replace("\\title", "\\title ")
formatted_res = res
# formatted_res = parse_latex_output(res)
if html_content:
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
iframe_src = f"data:text/html;base64,{encoded_html}"
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
return formatted_res, f"{download_link}<br>{iframe}"
return formatted_res, None
def cleanup_old_files():
current_time = time.time()
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
for file_path in Path(folder).glob('*'):
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
file_path.unlink()
with gr.Blocks(theme=gr.themes.Base()) as demo:
with gr.Row():
gr.Markdown(title)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(description)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(modelinfor)
gr.Markdown(joinus)
with gr.Row():
with gr.Accordion("How to use Fine-grained OCR (Color)", open=False):
with gr.Row():
gr.Image("res/image/howto_1.png", label="Select the Following Parameters")
gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor")
gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)")
gr.Image("res/image/howto_4.png", label="Make a Box Around The Text")
with gr.Row():
with gr.Group():
gr.Markdown(howto)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
image_input = gr.Image(type="filepath", label="Input Image")
image_editor = gr.ImageEditor(label="Image Editor", type="pil", visible=False)
task_dropdown = gr.Dropdown(
choices=[
"Plain Text OCR",
"Format Text OCR",
"Fine-grained OCR (Box)",
"Fine-grained OCR (Color)",
"Multi-crop OCR",
"Render Formatted OCR"
],
label="Select Task",
value="Plain Text OCR"
)
ocr_type_dropdown = gr.Dropdown(
choices=["ocr", "format"],
label="OCR Type",
visible=False
)
ocr_box_input = gr.Textbox(
label="OCR Box (x1,y1,x2,y2)",
placeholder="[100,100,200,200]",
visible=False
)
ocr_color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="OCR Color",
visible=False
)
# with gr.Row():
# max_new_tokens_slider = gr.Slider(50, 500, step=10, value=150, label="Max New Tokens")
# no_repeat_ngram_size_slider = gr.Slider(1, 10, step=1, value=2, label="No Repeat N-gram Size")
submit_button = gr.Button("Process")
editor_submit_button = gr.Button("Process Edited Image", visible=False)
with gr.Column(scale=1):
with gr.Group():
output_markdown = gr.Textbox(label="🫴🏻📸GOT-OCR")
output_html = gr.HTML(label="🫴🏻📸GOT-OCR")
task_dropdown.change(
update_inputs,
inputs=[task_dropdown],
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, image_input, image_editor, submit_button, editor_submit_button]
)
task_dropdown.change(
update_image_input,
inputs=[task_dropdown],
outputs=[image_input, image_editor, editor_submit_button]
)
submit_button.click(
ocr_demo,
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
outputs=[output_markdown, output_html]
)
editor_submit_button.click(
ocr_demo,
inputs=[image_editor, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
outputs=[output_markdown, output_html]
)
if __name__ == "__main__":
cleanup_old_files()
demo.launch(ssr_mode = False, mcp_server=True) |