File size: 28,868 Bytes
cef4f97
 
22c7b5b
cef4f97
 
 
d1d0907
1a87a19
02ff46f
 
 
4967985
7dcbad8
 
 
4326b14
9cf89ef
63a03ad
a33adcb
4326b14
408a931
 
 
 
 
 
 
 
 
 
 
 
 
 
a33adcb
 
 
 
 
 
 
 
 
 
02ff46f
a33adcb
 
 
 
 
22c7b5b
408a931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e5ee4
408a931
17e5ee4
 
 
 
408a931
 
 
 
 
 
 
 
 
 
17e5ee4
 
 
 
 
 
408a931
 
 
 
 
 
 
 
 
 
 
 
 
 
17e5ee4
 
 
408a931
 
 
 
 
 
 
 
 
 
3b378ec
a33adcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408a931
a33adcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408a931
 
 
 
 
a33adcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408a931
 
 
 
 
a33adcb
 
 
408a931
 
cef4f97
4326b14
 
 
 
 
 
ee4b3d0
fa528ee
 
 
 
 
a33adcb
 
 
 
 
 
 
 
 
 
 
 
408a931
a33adcb
 
408a931
 
 
 
 
 
 
 
 
 
 
a33adcb
 
 
 
 
 
 
17e5ee4
 
 
a33adcb
 
17e5ee4
a33adcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408a931
a33adcb
 
408a931
 
 
 
 
 
 
 
 
 
 
a33adcb
 
 
 
 
 
 
17e5ee4
 
 
a33adcb
 
17e5ee4
a33adcb
 
 
 
 
 
 
 
 
 
 
 
 
fa528ee
4326b14
131353d
4326b14
 
997a61b
7dcbad8
4326b14
 
7dcbad8
4326b14
3b378ec
fa528ee
 
 
9cf89ef
464330e
 
fa528ee
 
 
 
 
9cf89ef
fa528ee
 
 
 
 
a33adcb
 
 
408a931
 
 
 
 
 
 
 
 
 
4326b14
a33adcb
 
408a931
 
 
 
 
 
 
a33adcb
408a931
 
 
 
 
 
 
a33adcb
408a931
 
 
 
 
 
 
a33adcb
408a931
 
 
 
 
 
 
a33adcb
408a931
 
 
 
 
 
 
a33adcb
 
 
 
 
 
 
 
 
 
 
 
 
 
4326b14
 
 
 
 
9cf89ef
fa528ee
 
 
 
 
 
cef4f97
ee4b3d0
11f2cf1
 
 
 
 
 
 
 
 
cef4f97
 
 
 
 
11f2cf1
 
 
 
cef4f97
 
 
 
 
 
11f2cf1
 
 
 
cef4f97
f35ea73
3497964
d1a7b5b
 
3497964
eeaf186
d1a7b5b
 
3497964
d1a7b5b
 
 
 
 
3497964
d1a7b5b
 
3497964
d1a7b5b
eeaf186
3497964
d1a7b5b
eeaf186
 
d1a7b5b
 
3497964
eeaf186
d1a7b5b
 
eeaf186
d1a7b5b
3497964
d1a7b5b
eeaf186
d1a7b5b
 
 
3f89105
3497964
a197908
131353d
8bebde5
 
 
 
80266b2
79ffa77
 
 
 
8bebde5
 
 
 
 
 
131353d
ee4b3d0
997a61b
4326b14
fa528ee
 
3df4587
 
ee4b3d0
02ff46f
4326b14
 
 
 
63a03ad
 
7dcbad8
 
 
4326b14
 
 
 
cef4f97
2cd1f0b
4c630fe
 
ff7a2a0
 
448bc9b
 
ff7a2a0
 
 
 
4967985
de261b5
448bc9b
dfc79d4
 
 
 
3405c5a
dfc79d4
 
3405c5a
4c630fe
 
 
 
fa528ee
4c630fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131353d
a197908
131353d
3b378ec
4c630fe
fa528ee
ee4b3d0
4c630fe
 
3df4587
4c630fe
02ff46f
cef4f97
 
 
fa528ee
 
 
 
 
 
 
cef4f97
 
 
 
131353d
ee4b3d0
cef4f97
fa528ee
 
 
 
 
 
f34dca6
7dcbad8
07c16b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
import os
import base64
import spaces
import io
from PIL import Image
import numpy as np
import yaml
from pathlib import Path
from globe import title, description, modelinfor, joinus, howto
import uuid
import tempfile
import time
import shutil
import cv2
import re
import warnings

# Check transformers version for compatibility
try:
    import transformers
    transformers_version = transformers.__version__
    print(f"Transformers version: {transformers_version}")
    
    # Check if we need to use legacy cache handling
    if transformers_version.startswith(('4.4', '4.5', '4.6')):
        USE_LEGACY_CACHE = True
    else:
        USE_LEGACY_CACHE = False
except:
    USE_LEGACY_CACHE = False

# Try to import spaces module for ZeroGPU compatibility
try:
    import spaces
    SPACES_AVAILABLE = True
except ImportError:
    SPACES_AVAILABLE = False
    # Create a dummy decorator for local development
    def dummy_gpu_decorator(func):
        return func
    spaces = type('spaces', (), {'GPU': dummy_gpu_decorator})()

# Suppress specific warnings that are known issues with GOT-OCR
warnings.filterwarnings("ignore", message="The attention mask and the pad token id were not set")
warnings.filterwarnings("ignore", message="Setting `pad_token_id` to `eos_token_id`")
warnings.filterwarnings("ignore", message="The attention mask is not set and cannot be inferred")
warnings.filterwarnings("ignore", message="The `seen_tokens` attribute is deprecated")

class ModelCacheManager:
    """
    Manages model cache to prevent DynamicCache errors
    """
    def __init__(self, model):
        self.model = model
        self._clear_all_caches()
    
    def _clear_all_caches(self):
        """Clear all possible caches"""
        # Clear model cache
        if hasattr(self.model, 'clear_cache'):
            try:
                self.model.clear_cache()
            except:
                pass
        
        if hasattr(self.model, '_clear_cache'):
            try:
                self.model._clear_cache()
            except:
                pass
        
        # Clear transformers cache based on version
        try:
            if USE_LEGACY_CACHE:
                # Legacy cache clearing for older transformers versions
                from transformers import GenerationConfig
                if hasattr(GenerationConfig, 'clear_cache'):
                    GenerationConfig.clear_cache()
            else:
                # New cache clearing for recent transformers versions
                try:
                    from transformers.cache_utils import clear_cache
                    clear_cache()
                except:
                    pass
                
                # Also try the old method as fallback
                try:
                    from transformers import GenerationConfig
                    if hasattr(GenerationConfig, 'clear_cache'):
                        GenerationConfig.clear_cache()
                except:
                    pass
        except:
            pass
        
        # Clear torch cache
        try:
            import torch
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
        except:
            pass
    
    def safe_call(self, method_name, *args, **kwargs):
        """Safely call model methods with cache management"""
        try:
            # First attempt
            method = getattr(self.model, method_name)
            return method(*args, **kwargs)
        except AttributeError as e:
            if "get_max_length" in str(e):
                # Clear cache and retry
                self._clear_all_caches()
                try:
                    return method(*args, **kwargs)
                except:
                    # Try without any cache-related parameters
                    kwargs_copy = kwargs.copy()
                    # Remove any cache-related parameters that might cause issues
                    for key in list(kwargs_copy.keys()):
                        if 'cache' in key.lower():
                            del kwargs_copy[key]
                    return method(*args, **kwargs_copy)
            else:
                raise e
    
    def direct_call(self, method_name, *args, **kwargs):
        """Direct call bypassing all cache mechanisms"""
        try:
            # Clear all caches first
            self._clear_all_caches()
            
            # Remove any cache-related parameters
            kwargs_copy = kwargs.copy()
            for key in list(kwargs_copy.keys()):
                if 'cache' in key.lower():
                    del kwargs_copy[key]
            
            # Make the call
            method = getattr(self.model, method_name)
            return method(*args, **kwargs_copy)
        except Exception as e:
            # If still failing, try the original safe_call as last resort
            return self.safe_call(method_name, *args, **kwargs)
    
    def legacy_call(self, method_name, *args, **kwargs):
        """Legacy call method for older transformers versions"""
        try:
            # For legacy versions, we need to handle cache differently
            kwargs_copy = kwargs.copy()
            
            # Remove any cache-related parameters
            for key in list(kwargs_copy.keys()):
                if 'cache' in key.lower():
                    del kwargs_copy[key]
            
            # Clear caches
            self._clear_all_caches()
            
            # Make the call
            method = getattr(self.model, method_name)
            return method(*args, **kwargs_copy)
        except Exception as e:
            # Fallback to direct call
            return self.direct_call(method_name, *args, **kwargs)

def initialize_model_safely():
    """
    Safely initialize the GOT-OCR model with proper error handling for ZeroGPU
    """
    model_name = 'ucaslcl/GOT-OCR2_0'
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    
    try:
        # Initialize tokenizer with proper settings
        tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
        
        # Set pad token properly
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        
        config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
        
        # Initialize model with proper settings to avoid warnings
        model = AutoModel.from_pretrained(
            'ucaslcl/GOT-OCR2_0', 
            trust_remote_code=True, 
            low_cpu_mem_usage=True,  
            device_map=device, 
            use_safetensors=True,
            pad_token_id=tokenizer.eos_token_id,
            torch_dtype=torch.float16 if device == 'cuda' else torch.float32
        )
        
        model = model.eval().to(device)
        model.config.pad_token_id = tokenizer.eos_token_id
        
        # Ensure the model has proper tokenizer settings
        if hasattr(model, 'config'):
            model.config.pad_token_id = tokenizer.eos_token_id
            model.config.eos_token_id = tokenizer.eos_token_id
        
        # Create cache manager
        cache_manager = ModelCacheManager(model)
        
        return model, tokenizer, cache_manager
        
    except Exception as e:
        print(f"Error initializing model: {str(e)}")
        # Fallback initialization
        try:
            tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
            if tokenizer.pad_token is None:
                tokenizer.pad_token = tokenizer.eos_token
                
            model = AutoModel.from_pretrained(
                'ucaslcl/GOT-OCR2_0', 
                trust_remote_code=True, 
                low_cpu_mem_usage=True,  
                device_map=device, 
                use_safetensors=True
            )
            model = model.eval().to(device)
            
            # Create cache manager for fallback model
            cache_manager = ModelCacheManager(model)
            
            return model, tokenizer, cache_manager
        except Exception as fallback_error:
            raise Exception(f"Failed to initialize model: {str(e)}. Fallback also failed: {str(fallback_error)}")

# Initialize model, tokenizer, and cache manager
model, tokenizer, cache_manager = initialize_model_safely()

UPLOAD_FOLDER = "./uploads"
RESULTS_FOLDER = "./results"

for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
    if not os.path.exists(folder):
        os.makedirs(folder)

def image_to_base64(image):
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode()

def safe_model_chat(model, tokenizer, image_path, **kwargs):
    """
    Safe wrapper for model.chat to handle DynamicCache and other compatibility issues
    Optimized for ZeroGPU environments
    """
    try:
        # First attempt: normal call
        return model.chat(tokenizer, image_path, **kwargs)
    except AttributeError as e:
        if "get_max_length" in str(e):
            # Try to fix the cache issue by clearing it
            try:
                # Clear any existing cache
                if hasattr(model, 'clear_cache'):
                    model.clear_cache()
                elif hasattr(model, '_clear_cache'):
                    model._clear_cache()
                
                # Try to clear cache from transformers
                try:
                    from transformers import GenerationConfig
                    if hasattr(GenerationConfig, 'clear_cache'):
                        GenerationConfig.clear_cache()
                except:
                    pass
                
                # Retry the call
                return model.chat(tokenizer, image_path, **kwargs)
            except:
                # If still failing, try with different parameters
                try:
                    # Remove any cache-related parameters
                    kwargs_copy = kwargs.copy()
                    for key in list(kwargs_copy.keys()):
                        if 'cache' in key.lower():
                            del kwargs_copy[key]
                    return model.chat(tokenizer, image_path, **kwargs_copy)
                except:
                    raise Exception("Model compatibility issue: DynamicCache error. Please try again.")
        else:
            raise e
    except Exception as e:
        # Handle other potential issues
        if "attention_mask" in str(e).lower():
            # Try to handle attention mask issues
            try:
                return model.chat(tokenizer, image_path, **kwargs)
            except:
                raise Exception(f"Attention mask error: {str(e)}")
        else:
            raise e

def safe_model_chat_crop(model, tokenizer, image_path, **kwargs):
    """
    Safe wrapper for model.chat_crop to handle DynamicCache and other compatibility issues
    Optimized for ZeroGPU environments
    """
    try:
        # First attempt: normal call
        return model.chat_crop(tokenizer, image_path, **kwargs)
    except AttributeError as e:
        if "get_max_length" in str(e):
            # Try to fix the cache issue by clearing it
            try:
                # Clear any existing cache
                if hasattr(model, 'clear_cache'):
                    model.clear_cache()
                elif hasattr(model, '_clear_cache'):
                    model._clear_cache()
                
                # Try to clear cache from transformers
                try:
                    from transformers import GenerationConfig
                    if hasattr(GenerationConfig, 'clear_cache'):
                        GenerationConfig.clear_cache()
                except:
                    pass
                
                # Retry the call
                return model.chat_crop(tokenizer, image_path, **kwargs)
            except:
                # If still failing, try with different parameters
                try:
                    # Remove any cache-related parameters
                    kwargs_copy = kwargs.copy()
                    for key in list(kwargs_copy.keys()):
                        if 'cache' in key.lower():
                            del kwargs_copy[key]
                    return model.chat_crop(tokenizer, image_path, **kwargs_copy)
                except:
                    raise Exception("Model compatibility issue: DynamicCache error. Please try again.")
        else:
            raise e
    except Exception as e:
        # Handle other potential issues
        if "attention_mask" in str(e).lower():
            # Try to handle attention mask issues
            try:
                return model.chat_crop(tokenizer, image_path, **kwargs)
            except:
                raise Exception(f"Attention mask error: {str(e)}")
        else:
            raise e


@spaces.GPU()
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
    if image is None:
        return "Error: No image provided", None, None
    
    unique_id = str(uuid.uuid4())
    image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
    result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
    
    try:
        if isinstance(image, dict):
            composite_image = image.get("composite")
            if composite_image is not None:
                if isinstance(composite_image, np.ndarray):
                    cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR))
                elif isinstance(composite_image, Image.Image):
                    composite_image.save(image_path)
                else:
                    return "Error: Unsupported image format from ImageEditor", None, None
            else:
                return "Error: No composite image found in ImageEditor output", None, None
        elif isinstance(image, np.ndarray):
            cv2.imwrite(image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
        elif isinstance(image, str):
            shutil.copy(image, image_path)
        else:
            return "Error: Unsupported image format", None, None

        # Wrap model calls in try-except to handle DynamicCache errors
        try:
            if task == "Plain Text OCR":
                # Use cache manager for safer calls
                try:
                    res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='ocr')
                except:
                    try:
                        # Fallback to direct call
                        res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type='ocr')
                    except:
                        # Final fallback to legacy call
                        res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type='ocr')
                return res, None, unique_id
            else:
                if task == "Format Text OCR":
                    try:
                        res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
                    except:
                        try:
                            res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
                        except:
                            res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
                elif task == "Fine-grained OCR (Box)":
                    try:
                        res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
                    except:
                        try:
                            res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
                        except:
                            res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
                elif task == "Fine-grained OCR (Color)":
                    try:
                        res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
                    except:
                        try:
                            res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
                        except:
                            res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
                elif task == "Multi-crop OCR":
                    try:
                        res = cache_manager.safe_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
                    except:
                        try:
                            res = cache_manager.direct_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
                        except:
                            res = cache_manager.legacy_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
                elif task == "Render Formatted OCR":
                    try:
                        res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
                    except:
                        try:
                            res = cache_manager.direct_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
                        except:
                            res = cache_manager.legacy_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
                
                if os.path.exists(result_path):
                    with open(result_path, 'r') as f:
                        html_content = f.read()
                    return res, html_content, unique_id
                else:
                    return res, None, unique_id
        except AttributeError as e:
            if "get_max_length" in str(e):
                # Handle DynamicCache compatibility issue
                return "Error: Model compatibility issue detected. Please try again or contact support.", None, None
            else:
                raise e
                
    except Exception as e:
        return f"Error: {str(e)}", None, None
    finally:
        if os.path.exists(image_path):
            os.remove(image_path)
            
def update_image_input(task):
    if task == "Fine-grained OCR (Color)":
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
    else:
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)

def update_inputs(task):
    if task in ["Plain Text OCR", "Format Text OCR", "Multi-crop OCR", "Render Formatted OCR"]:
        return [
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=False)
        ]
    elif task == "Fine-grained OCR (Box)":
        return [
            gr.update(visible=True, choices=["ocr", "format"]),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=False)
        ]
    elif task == "Fine-grained OCR (Color)":
        return [
            gr.update(visible=True, choices=["ocr", "format"]),
            gr.update(visible=False),
            gr.update(visible=True, choices=["red", "green", "blue"]),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=True)
        ]
    
def parse_latex_output(res):
    # Split the input, preserving newlines and empty lines
    lines = re.split(r'(\$\$.*?\$\$)', res, flags=re.DOTALL)
    parsed_lines = []
    in_latex = False
    latex_buffer = []

    for line in lines:
        if line == '\n':
            if in_latex:
                latex_buffer.append(line)
            else:
                parsed_lines.append(line)
            continue

        line = line.strip()
        
        latex_patterns = [r'\{', r'\}', r'\[', r'\]', r'\\', r'\$', r'_', r'^', r'"']
        contains_latex = any(re.search(pattern, line) for pattern in latex_patterns)
        
        if contains_latex:
            if not in_latex:
                in_latex = True
                latex_buffer = ['$$']
            latex_buffer.append(line)
        else:
            if in_latex:
                latex_buffer.append('$$')
                parsed_lines.extend(latex_buffer)
                in_latex = False
                latex_buffer = []
            parsed_lines.append(line)

    if in_latex:
        latex_buffer.append('$$')
        parsed_lines.extend(latex_buffer)

    return '$$\\$$\n'.join(parsed_lines)
                         

def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
    """
    Main OCR demonstration function that processes images and returns results.
    
    Args:
        image (Union[dict, np.ndarray, str, PIL.Image]): Input image in one of these formats: Image component state with keys: path: str | None (Path to local file) url: str | None (Public URL or base64 image) size: int | None (Image size in bytes) orig_name: str | None (Original filename) mime_type: str | None (Image MIME type) is_stream: bool (Always False) meta: dict(str, Any) OR  dict: ImageEditor component state with keys: background: filepath | None layers: list[filepath] composite: filepath | None id: str | None OR np.ndarray: Raw image array str: Path to image file PIL.Image: PIL Image object
        task (Literal['Plain Text OCR', 'Format Text OCR', 'Fine-grained OCR (Box)', 'Fine-grained OCR (Color)', 'Multi-crop OCR', 'Render Formatted OCR'], default: "Plain Text OCR"): The type of OCR processing to perform: "Plain Text OCR": Basic text extraction without formatting, "Format Text OCR": Text extraction with preserved formatting, "Fine-grained OCR (Box)": Text extraction from specific bounding box regions, "Fine-grained OCR (Color)": Text extraction from regions marked with specific colors, "Multi-crop OCR": Text extraction from multiple cropped regions, "Render Formatted OCR": Text extraction with HTML rendering of formatting
        ocr_type (Literal['ocr', 'format'], default: "ocr"):The type of OCR processing to apply: "ocr": Basic text extraction without formatting "format": Text extraction with preserved formatting and structure
        ocr_box (str): Bounding box coordinates specifying the region for fine-grained OCR. Format: "x1,y1,x2,y2" where: x1,y1: Top-left corner coordinates ; x2,y2: Bottom-right corner coordinates Example: "100,100,300,200" for a box starting at (100,100) and ending at (300,200)
        ocr_color (Literal['red', 'green', 'blue'], default: "red"): Color specification for fine-grained OCR when using color-based region selection: "red": Extract text from regions marked in red "green": Extract text from regions marked in green "blue": Extract text from regions marked in blue
        
    Returns:
        tuple: (formatted_result, html_output)
            - formatted_result (str): Formatted OCR result text
            - html_output (str): HTML visualization if applicable
    """
    res, html_content, unique_id = process_image(image, task, ocr_type, ocr_box, ocr_color)
    
    if isinstance(res, str) and res.startswith("Error:"):
        return res, None

    res = res.replace("\\title", "\\title ")
    formatted_res = res
    # formatted_res = parse_latex_output(res)
    
    if html_content:
        encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
        iframe_src = f"data:text/html;base64,{encoded_html}"
        iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
        download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
        return formatted_res, f"{download_link}<br>{iframe}"
    return formatted_res, None

def cleanup_old_files():
    current_time = time.time()
    for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
        for file_path in Path(folder).glob('*'):
            if current_time - file_path.stat().st_mtime > 3600:  # 1 hour
                file_path.unlink()

with gr.Blocks(theme=gr.themes.Base()) as demo:
    with gr.Row():
        gr.Markdown(title)
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group():                    
                gr.Markdown(description)
        with gr.Column(scale=1):
            with gr.Group():
                gr.Markdown(modelinfor)
                gr.Markdown(joinus)
    with gr.Row():
        with gr.Accordion("How to use Fine-grained OCR (Color)", open=False):
            with gr.Row():
                gr.Image("res/image/howto_1.png", label="Select the Following Parameters")
                gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor")
                gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)")
                gr.Image("res/image/howto_4.png", label="Make a Box Around The Text")
            with gr.Row():
                with gr.Group():
                    gr.Markdown(howto)

    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group():
                image_input = gr.Image(type="filepath", label="Input Image")
                image_editor = gr.ImageEditor(label="Image Editor", type="pil", visible=False)
                task_dropdown = gr.Dropdown(
                    choices=[
                        "Plain Text OCR",
                        "Format Text OCR",
                        "Fine-grained OCR (Box)",
                        "Fine-grained OCR (Color)",
                        "Multi-crop OCR",
                        "Render Formatted OCR"
                    ],
                    label="Select Task",
                    value="Plain Text OCR"
                )
                ocr_type_dropdown = gr.Dropdown(
                    choices=["ocr", "format"],
                    label="OCR Type",
                    visible=False
                )
                ocr_box_input = gr.Textbox(
                    label="OCR Box (x1,y1,x2,y2)",
                    placeholder="[100,100,200,200]",
                    visible=False
                )
                ocr_color_dropdown = gr.Dropdown(
                    choices=["red", "green", "blue"],
                    label="OCR Color",
                    visible=False
                )
                # with gr.Row():
                    # max_new_tokens_slider = gr.Slider(50, 500, step=10, value=150, label="Max New Tokens")
                    # no_repeat_ngram_size_slider = gr.Slider(1, 10, step=1, value=2, label="No Repeat N-gram Size")

                submit_button = gr.Button("Process")
                editor_submit_button = gr.Button("Process Edited Image", visible=False)

        with gr.Column(scale=1):
            with gr.Group():
                output_markdown = gr.Textbox(label="🫴🏻📸GOT-OCR")
                output_html = gr.HTML(label="🫴🏻📸GOT-OCR")

    task_dropdown.change(
        update_inputs,
        inputs=[task_dropdown],
        outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, image_input, image_editor, submit_button, editor_submit_button]
    )
    
    task_dropdown.change(
        update_image_input,
        inputs=[task_dropdown],
        outputs=[image_input, image_editor, editor_submit_button]
    )
    
    submit_button.click(
        ocr_demo,
        inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
        outputs=[output_markdown, output_html]
    )
    editor_submit_button.click(
        ocr_demo,
        inputs=[image_editor, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
        outputs=[output_markdown, output_html]
    )

if __name__ == "__main__":
    cleanup_old_files()
    demo.launch(ssr_mode = False, mcp_server=True)