# app.py ────────────────────────────────────────────────────────────── import os, json, torch, asyncio from fastapi import FastAPI, WebSocket, WebSocketDisconnect from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor from snac import SNAC # 0) Login + Device --------------------------------------------------- HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN: login(HF_TOKEN) device = "cuda" if torch.cuda.is_available() else "cpu" torch.backends.cuda.enable_flash_sdp(False) # PyTorch‑2.2‑Bug # 1) Konstanten ------------------------------------------------------- REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1" CHUNK_TOKENS = 50 START_TOKEN = 128259 NEW_BLOCK = 128257 EOS_TOKEN = 128258 AUDIO_BASE = 128266 AUDIO_IDS = torch.arange(AUDIO_BASE, AUDIO_BASE + 4096) # 2) Logit‑Mask (NEW_BLOCK + Audio; EOS erst nach 1. Block) ---------- class AudioMask(LogitsProcessor): def __init__(self, audio_ids: torch.Tensor): super().__init__() self.allow = torch.cat([ torch.tensor([NEW_BLOCK], device=audio_ids.device), audio_ids ]) self.eos = torch.tensor([EOS_TOKEN], device=audio_ids.device) self.sent_blocks = 0 def __call__(self, input_ids, logits): allowed = self.allow if self.sent_blocks: # ab 1. Block EOS zulassen allowed = torch.cat([allowed, self.eos]) mask = logits.new_full(logits.shape, float("-inf")) mask[:, allowed] = 0 return logits + mask # 3) FastAPI Grundgerüst --------------------------------------------- app = FastAPI() @app.get("/") def hello(): return {"status": "ok"} @app.on_event("startup") def load_models(): global tok, model, snac, masker print("⏳ Lade Modelle …", flush=True) tok = AutoTokenizer.from_pretrained(REPO) snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) model = AutoModelForCausalLM.from_pretrained( REPO, device_map={"": 0} if device == "cuda" else None, torch_dtype=torch.bfloat16 if device == "cuda" else None, low_cpu_mem_usage=True, ) model.config.pad_token_id = model.config.eos_token_id masker = AudioMask(AUDIO_IDS.to(device)) print("✅ Modelle geladen", flush=True) # 4) Helper ----------------------------------------------------------- def build_prompt(text: str, voice: str): prompt_ids = tok(f"{voice}: {text}", return_tensors="pt").input_ids.to(device) ids = torch.cat([torch.tensor([[START_TOKEN]], device=device), prompt_ids, torch.tensor([[128009, 128260]], device=device)], 1) attn = torch.ones_like(ids) return ids, attn def decode_block(block7: list[int]) -> bytes: l1,l2,l3=[],[],[] l1.append(block7[0]) l2.append(block7[1]-4096) l3 += [block7[2]-8192, block7[3]-12288] l2.append(block7[4]-16384) l3 += [block7[5]-20480, block7[6]-24576] with torch.no_grad(): codes = [torch.tensor(x, device=device).unsqueeze(0) for x in (l1,l2,l3)] audio = snac.decode(codes).squeeze().detach().cpu().numpy() return (audio*32767).astype("int16").tobytes() # 5) WebSocket‑Endpoint ---------------------------------------------- @app.websocket("/ws/tts") async def tts(ws: WebSocket): await ws.accept() try: req = json.loads(await ws.receive_text()) text = req.get("text", "") voice = req.get("voice", "Jakob") ids, attn = build_prompt(text, voice) past = None offset_len = ids.size(1) # wie viele Tokens existieren schon last_tok = None buf = [] while True: # --- Mini‑Generate ------------------------------------------- gen = model.generate( input_ids = ids if past is None else torch.tensor([[last_tok]], device=device), attention_mask = attn if past is None else None, past_key_values = past, max_new_tokens = CHUNK_TOKENS, logits_processor= [masker], do_sample=True, temperature=0.7, top_p=0.95, use_cache=True, return_legacy_cache=True # Added legacy cache ) # ----- neue Tokens heraus schneiden -------------------------- new = gen[0, offset_len:].tolist() if not new: # nichts -> fertig break offset_len += len(new) # ----- weiter mit Cache (letzte PKV steht im Modell) --------- past = gen._past_key_values last_tok = new[-1] print("new tokens:", new[:25], flush=True) # ----- Token‑Handling ---------------------------------------- for t in new: if t == EOS_TOKEN: raise StopIteration if t == NEW_BLOCK: buf.clear() continue buf.append(t - AUDIO_BASE) if len(buf) == 7: await ws.send_bytes(decode_block(buf)) buf.clear() masker.sent_blocks = 1 # ab jetzt EOS zulässig except (StopIteration, WebSocketDisconnect): pass except Exception as e: print("❌ WS‑Error:", e, flush=True) if ws.client_state.name != "DISCONNECTED": await ws.close(code=1011) finally: if ws.client_state.name != "DISCONNECTED": try: await ws.close() except RuntimeError: pass # 6) Dev‑Start -------------------------------------------------------- if __name__ == "__main__": import uvicorn, sys uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info")