Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -14,17 +14,15 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
14 |
if HF_TOKEN:
|
15 |
login(token=HF_TOKEN)
|
16 |
|
17 |
-
# —
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
-
#device = "cpu"
|
20 |
|
21 |
# — Modelle laden —
|
22 |
-
print("Loading SNAC model
|
23 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
24 |
|
25 |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
26 |
-
#
|
27 |
-
|
28 |
snapshot_download(
|
29 |
repo_id=model_name,
|
30 |
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
|
@@ -35,19 +33,24 @@ snapshot_download(
|
|
35 |
]
|
36 |
)
|
37 |
|
38 |
-
print("Loading Orpheus model
|
39 |
model = AutoModelForCausalLM.from_pretrained(
|
40 |
model_name, torch_dtype=torch.bfloat16
|
41 |
).to(device)
|
42 |
model.config.pad_token_id = model.config.eos_token_id
|
43 |
-
|
44 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
|
|
|
|
|
|
|
|
|
46 |
# — Hilfsfunktionen —
|
47 |
|
48 |
def process_prompt(text: str, voice: str):
|
49 |
prompt = f"{voice}: {text}"
|
50 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
|
|
51 |
start = torch.tensor([[128259]], dtype=torch.int64)
|
52 |
end = torch.tensor([[128009, 128260]], dtype=torch.int64)
|
53 |
ids = torch.cat([start, input_ids, end], dim=1).to(device)
|
@@ -55,30 +58,32 @@ def process_prompt(text: str, voice: str):
|
|
55 |
return ids, mask
|
56 |
|
57 |
def parse_output(generated_ids: torch.LongTensor):
|
58 |
-
"""
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
#
|
63 |
-
|
|
|
|
|
|
|
64 |
if idxs.numel() > 0:
|
65 |
cut = idxs[-1].item() + 1
|
66 |
cropped = generated_ids[:, cut:]
|
67 |
else:
|
68 |
cropped = generated_ids
|
69 |
|
70 |
-
#
|
71 |
-
|
72 |
-
for
|
73 |
-
|
74 |
-
|
75 |
-
# 3) Flache Liste zurückgeben
|
76 |
-
return rows[0].tolist()
|
77 |
|
78 |
def redistribute_codes(code_list: list[int], snac_model: SNAC):
|
79 |
-
"""
|
|
|
|
|
80 |
layer1, layer2, layer3 = [], [], []
|
81 |
-
for i in range(
|
82 |
base = code_list[7*i : 7*i+7]
|
83 |
layer1.append(base[0])
|
84 |
layer2.append(base[1] - 4096)
|
@@ -89,13 +94,11 @@ def redistribute_codes(code_list: list[int], snac_model: SNAC):
|
|
89 |
layer3.append(base[6] - 6*4096)
|
90 |
|
91 |
dev = next(snac_model.parameters()).device
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
audio = snac_model.decode(codes)
|
98 |
-
return audio.detach().squeeze().cpu().numpy() # float32 @24 kHz
|
99 |
|
100 |
# — FastAPI + WebSocket-Endpoint —
|
101 |
app = FastAPI()
|
@@ -110,28 +113,28 @@ async def tts_ws(ws: WebSocket):
|
|
110 |
text = data.get("text", "")
|
111 |
voice = data.get("voice", "Jakob")
|
112 |
|
113 |
-
# 1) Prompt →
|
114 |
ids, mask = process_prompt(text, voice)
|
115 |
|
116 |
-
# 2)
|
117 |
gen_ids = model.generate(
|
118 |
input_ids=ids,
|
119 |
attention_mask=mask,
|
120 |
-
max_new_tokens=200,
|
121 |
do_sample=True,
|
122 |
temperature=0.7,
|
123 |
top_p=0.95,
|
124 |
repetition_penalty=1.1,
|
125 |
-
eos_token_id=
|
126 |
)
|
127 |
|
128 |
-
# 3)
|
129 |
code_list = parse_output(gen_ids)
|
130 |
audio_np = redistribute_codes(code_list, snac)
|
131 |
|
132 |
-
# 4)
|
133 |
pcm16 = (audio_np * 32767).astype("int16").tobytes()
|
134 |
-
chunk = 2400 * 2
|
135 |
for i in range(0, len(pcm16), chunk):
|
136 |
await ws.send_bytes(pcm16[i : i+chunk])
|
137 |
await asyncio.sleep(0.1)
|
|
|
14 |
if HF_TOKEN:
|
15 |
login(token=HF_TOKEN)
|
16 |
|
17 |
+
# — Device —
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
19 |
|
20 |
# — Modelle laden —
|
21 |
+
print("Loading SNAC model…")
|
22 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
23 |
|
24 |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
25 |
+
# Nur die Konfig + Safetensors, alles andere wird ignoriert
|
|
|
26 |
snapshot_download(
|
27 |
repo_id=model_name,
|
28 |
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
|
|
|
33 |
]
|
34 |
)
|
35 |
|
36 |
+
print("Loading Orpheus model…")
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
model_name, torch_dtype=torch.bfloat16
|
39 |
).to(device)
|
40 |
model.config.pad_token_id = model.config.eos_token_id
|
|
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
|
43 |
+
# — Konstanten für Audio‑Token →
|
44 |
+
# (muss übereinstimmen mit Deinem Training; hier 128266)
|
45 |
+
AUDIO_TOKEN_OFFSET = 128266
|
46 |
+
|
47 |
# — Hilfsfunktionen —
|
48 |
|
49 |
def process_prompt(text: str, voice: str):
|
50 |
prompt = f"{voice}: {text}"
|
51 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
52 |
+
# Laut Spezifikation:
|
53 |
+
# start_token=128259, end_tokens=(128009,128260)
|
54 |
start = torch.tensor([[128259]], dtype=torch.int64)
|
55 |
end = torch.tensor([[128009, 128260]], dtype=torch.int64)
|
56 |
ids = torch.cat([start, input_ids, end], dim=1).to(device)
|
|
|
58 |
return ids, mask
|
59 |
|
60 |
def parse_output(generated_ids: torch.LongTensor):
|
61 |
+
"""
|
62 |
+
Croppt nach dem letzten 128257-Start-Token, entfernt Padding (128258)
|
63 |
+
und zieht dann den Audio‑Offset ab, um echte Code‑IDs zu bekommen.
|
64 |
+
"""
|
65 |
+
# finde letztes Audio‑Start‑Token
|
66 |
+
token_to_start = 128257
|
67 |
+
token_to_remove = model.config.eos_token_id # 128258
|
68 |
+
|
69 |
+
idxs = (generated_ids == token_to_start).nonzero(as_tuple=True)[1]
|
70 |
if idxs.numel() > 0:
|
71 |
cut = idxs[-1].item() + 1
|
72 |
cropped = generated_ids[:, cut:]
|
73 |
else:
|
74 |
cropped = generated_ids
|
75 |
|
76 |
+
# flatten & remove PAD, dann Offset abziehen
|
77 |
+
flat = cropped[0][cropped[0] != token_to_remove]
|
78 |
+
codes = [(int(t) - AUDIO_TOKEN_OFFSET) for t in flat]
|
79 |
+
return codes
|
|
|
|
|
|
|
80 |
|
81 |
def redistribute_codes(code_list: list[int], snac_model: SNAC):
|
82 |
+
"""
|
83 |
+
Verteilt die flache Code‑Liste in 3 Layers und dekodiert mit SNAC.
|
84 |
+
"""
|
85 |
layer1, layer2, layer3 = [], [], []
|
86 |
+
for i in range(len(code_list) // 7):
|
87 |
base = code_list[7*i : 7*i+7]
|
88 |
layer1.append(base[0])
|
89 |
layer2.append(base[1] - 4096)
|
|
|
94 |
layer3.append(base[6] - 6*4096)
|
95 |
|
96 |
dev = next(snac_model.parameters()).device
|
97 |
+
c1 = torch.tensor(layer1, device=dev).unsqueeze(0)
|
98 |
+
c2 = torch.tensor(layer2, device=dev).unsqueeze(0)
|
99 |
+
c3 = torch.tensor(layer3, device=dev).unsqueeze(0)
|
100 |
+
audio = snac_model.decode([c1, c2, c3])
|
101 |
+
return audio.detach().squeeze().cpu().numpy()
|
|
|
|
|
102 |
|
103 |
# — FastAPI + WebSocket-Endpoint —
|
104 |
app = FastAPI()
|
|
|
113 |
text = data.get("text", "")
|
114 |
voice = data.get("voice", "Jakob")
|
115 |
|
116 |
+
# 1) Prompt → Token‑Tensoren
|
117 |
ids, mask = process_prompt(text, voice)
|
118 |
|
119 |
+
# 2) Generation
|
120 |
gen_ids = model.generate(
|
121 |
input_ids=ids,
|
122 |
attention_mask=mask,
|
123 |
+
max_new_tokens=200, # zum Debug
|
124 |
do_sample=True,
|
125 |
temperature=0.7,
|
126 |
top_p=0.95,
|
127 |
repetition_penalty=1.1,
|
128 |
+
eos_token_id=model.config.eos_token_id,
|
129 |
)
|
130 |
|
131 |
+
# 3) Token → Code‑Liste → Audio (Float32 @24 kHz)
|
132 |
code_list = parse_output(gen_ids)
|
133 |
audio_np = redistribute_codes(code_list, snac)
|
134 |
|
135 |
+
# 4) In 0.1 s‑Chunks (2400 Samples) als PCM16 streamen
|
136 |
pcm16 = (audio_np * 32767).astype("int16").tobytes()
|
137 |
+
chunk = 2400 * 2
|
138 |
for i in range(0, len(pcm16), chunk):
|
139 |
await ws.send_bytes(pcm16[i : i+chunk])
|
140 |
await asyncio.sleep(0.1)
|