Tomtom84 commited on
Commit
986d4cd
·
verified ·
1 Parent(s): a3af518

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -75
app.py CHANGED
@@ -12,51 +12,55 @@ HF_TOKEN = os.getenv("HF_TOKEN")
12
  if HF_TOKEN:
13
  login(HF_TOKEN)
14
 
15
- # — Device wählen —
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
 
 
 
 
 
 
 
 
 
 
18
  # — FastAPI instanziieren —
19
  app = FastAPI()
20
 
21
- # — Hello‑Route, damit GET / nicht 404 wirft —
22
  @app.get("/")
23
  async def read_root():
24
- return {"message": "Hello, world!"}
25
 
26
  # — Modelle bei Startup laden —
27
  @app.on_event("startup")
28
  async def load_models():
29
  global tokenizer, model, snac
 
30
  snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
31
- REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
32
- tokenizer = AutoTokenizer.from_pretrained(REPO)
 
33
  model = AutoModelForCausalLM.from_pretrained(
34
- REPO,
35
  device_map="auto",
36
- torch_dtype=torch.bfloat16 if device == "cuda" else None,
37
  low_cpu_mem_usage=True
38
  )
39
- # Für pad-token fallback auf eos
40
- model.config.pad_token_id = model.config.eos_token_id
41
-
42
- # — Hilfsfunktionen —
43
- START_TOKEN = 128259
44
- END_TOKENS = [128009, 128260]
45
- RESET_TOKEN = 128257
46
- AUDIO_OFFSET = 128266
47
- EOS_TOKEN = model.config.eos_token_id if 'model' in globals() else 128258
48
 
 
49
  def prepare_inputs(text: str, voice: str):
50
- prompt = f"{voice}: {text}"
51
- ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
52
- start = torch.tensor([[START_TOKEN]], device=device)
53
- end = torch.tensor([END_TOKENS], device=device)
54
- input_ids = torch.cat([start, ids, end], dim=1)
55
- attention_mask = torch.ones_like(input_ids)
56
- return input_ids, attention_mask
57
-
58
- def decode_block(block: list[int]):
59
- # aus genau 7 Audio‑Codes ein PCM‑Byte‑Block bauen
60
  l1, l2, l3 = [], [], []
61
  b = block
62
  l1.append(b[0])
@@ -72,68 +76,76 @@ def decode_block(block: list[int]):
72
  torch.tensor(l3, device=device).unsqueeze(0),
73
  ]
74
  audio = snac.decode(codes).squeeze().cpu().numpy()
75
- return (audio * 32767).astype("int16").tobytes()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
  # — WebSocket‑Endpoint für TTS Streaming —
78
  @app.websocket("/ws/tts")
79
  async def tts_ws(ws: WebSocket):
80
  await ws.accept()
81
  try:
82
- msg = await ws.receive_text()
83
- req = json.loads(msg)
84
  text = req.get("text", "")
85
  voice = req.get("voice", "Jakob")
86
 
87
- input_ids, attention_mask = prepare_inputs(text, voice)
88
- past_kvs = None
89
- collected = []
90
-
91
- # Token‑für‑Token mit eigener Sampling‑Schleife
92
- while True:
93
- out = model(
94
- input_ids=input_ids if past_kvs is None else None,
95
- attention_mask=attention_mask if past_kvs is None else None,
96
- past_key_values=past_kvs,
97
- use_cache=True,
98
- )
99
- logits = out.logits[:, -1, :]
100
- past_kvs = out.past_key_values
101
-
102
- # Sampling
103
- probs = torch.softmax(logits, dim=-1)
104
- nxt = torch.multinomial(probs, num_samples=1).item()
105
-
106
- # EOS → fertig
107
- if nxt == EOS_TOKEN:
108
- break
109
- # RESET → alte Sammlung verwerfen
110
- if nxt == RESET_TOKEN:
111
- collected = []
112
- # und input_ids für nächsten Durchlauf auf None setzen
113
- input_ids = None
114
- attention_mask = None
115
- continue
116
 
117
- # Audio‑Code abziehen & sammeln
118
- collected.append(nxt - AUDIO_OFFSET)
119
- # jede 7 Codes → dekodieren & streamen
120
- if len(collected) == 7:
121
- pcm = decode_block(collected)
122
- collected = []
123
- await ws.send_bytes(pcm)
124
-
125
- # nur beim allerersten Schritt mit IDs arbeiten
126
- input_ids = None
127
- attention_mask = None
128
-
129
- # Stream sauber beenden
130
  await ws.close()
131
-
132
  except WebSocketDisconnect:
133
- # Client hat Disconnect gemacht → nichts tun
134
  pass
135
-
136
  except Exception as e:
137
- # auf Fehler 1011 senden
138
  print("Error in /ws/tts:", e)
139
  await ws.close(code=1011)
 
 
 
 
 
12
  if HF_TOKEN:
13
  login(HF_TOKEN)
14
 
15
+ # — Gerät wählen —
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
 
18
+ # — Modell‑Parameter —
19
+ MODEL_NAME = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
20
+ START_MARKER = 128259 # <|startoftranscript|>
21
+ RESTART_MARKER = 128257 # <|startoftranscript_again|>
22
+ EOS_TOKEN = 128258 # <|endoftranscript|>
23
+ AUDIO_TOKEN_OFFSET = 128266 # Offset zum Zurückrechnen
24
+ BLOCK_TOKENS = 7 # SNAC erwartet 7 Audio‑Tokens pro Block
25
+ CHUNK_TOKENS = 50 # Anzahl neuer Tokens pro Generate‑Runde
26
+
27
  # — FastAPI instanziieren —
28
  app = FastAPI()
29
 
30
+ # — Damit GET / nicht 404 wirft —
31
  @app.get("/")
32
  async def read_root():
33
+ return {"message": "Orpheus TTS Server ist live 🎙️"}
34
 
35
  # — Modelle bei Startup laden —
36
  @app.on_event("startup")
37
  async def load_models():
38
  global tokenizer, model, snac
39
+ # SNAC laden
40
  snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
41
+ # Tokenizer
42
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
43
+ # TTS‑LM
44
  model = AutoModelForCausalLM.from_pretrained(
45
+ MODEL_NAME,
46
  device_map="auto",
47
+ torch_dtype=torch.bfloat16 if device=="cuda" else None,
48
  low_cpu_mem_usage=True
49
  )
50
+ model.config.pad_token_id = EOS_TOKEN
 
 
 
 
 
 
 
 
51
 
52
+ # — Eingabe aufbereiten —
53
  def prepare_inputs(text: str, voice: str):
54
+ prompt = f"{voice}: {text}"
55
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
56
+ start = torch.tensor([[START_MARKER]], device=device)
57
+ end = torch.tensor([[128009, EOS_TOKEN]], device=device)
58
+ ids = torch.cat([start, input_ids, end], dim=1)
59
+ attn_mask = torch.ones_like(ids)
60
+ return ids, attn_mask
61
+
62
+ # Aus 7 Audio‑Tokens ein PCM‑Block erzeugen —
63
+ def decode_block(block: list[int]) -> bytes:
64
  l1, l2, l3 = [], [], []
65
  b = block
66
  l1.append(b[0])
 
76
  torch.tensor(l3, device=device).unsqueeze(0),
77
  ]
78
  audio = snac.decode(codes).squeeze().cpu().numpy()
79
+ pcm16 = (audio * 32767).astype("int16").tobytes()
80
+ return pcm16
81
+
82
+ # — Generator: kleine Chunks token‑weise erzeugen und block‑weise dekodieren —
83
+ async def generate_and_stream(ws: WebSocket, ids, attn_mask):
84
+ buffer: list[int] = []
85
+ past_kvs = None
86
+
87
+ while True:
88
+ # wir rufen model.generate in Häppchen auf
89
+ outputs = model.generate(
90
+ input_ids = ids if past_kvs is None else None,
91
+ attention_mask = attn_mask if past_kvs is None else None,
92
+ past_key_values= past_kvs,
93
+ use_cache = True,
94
+ max_new_tokens = CHUNK_TOKENS,
95
+ do_sample = True,
96
+ temperature = 0.7,
97
+ top_p = 0.95,
98
+ repetition_penalty = 1.1,
99
+ eos_token_id = EOS_TOKEN,
100
+ pad_token_id = EOS_TOKEN,
101
+ return_dict_in_generate = True,
102
+ output_scores = False,
103
+ )
104
+
105
+ # update past_kvs
106
+ past_kvs = outputs.past_key_values
107
+
108
+ # erhalte nur die gerade neu generierten Token
109
+ seq = outputs.sequences[0]
110
+ new_tokens = seq[-CHUNK_TOKENS:].tolist() if past_kvs is not None else seq[ids.shape[-1]:].tolist()
111
+
112
+ for tok in new_tokens:
113
+ # Neustart bei erneutem START‑Marker
114
+ if tok == RESTART_MARKER:
115
+ buffer = []
116
+ continue
117
+ # Ende
118
+ if tok == EOS_TOKEN:
119
+ return
120
+ # Audio‑Code berechnen
121
+ buffer.append(tok - AUDIO_TOKEN_OFFSET)
122
+ # sobald 7 Audio‑Tokens, dekodieren und streamen
123
+ if len(buffer) >= BLOCK_TOKENS:
124
+ block = buffer[:BLOCK_TOKENS]
125
+ buffer = buffer[BLOCK_TOKENS:]
126
+ pcm = decode_block(block)
127
+ await ws.send_bytes(pcm)
128
 
129
  # — WebSocket‑Endpoint für TTS Streaming —
130
  @app.websocket("/ws/tts")
131
  async def tts_ws(ws: WebSocket):
132
  await ws.accept()
133
  try:
134
+ data = await ws.receive_text()
135
+ req = json.loads(data)
136
  text = req.get("text", "")
137
  voice = req.get("voice", "Jakob")
138
 
139
+ ids, attn_mask = prepare_inputs(text, voice)
140
+ await generate_and_stream(ws, ids, attn_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  await ws.close()
 
143
  except WebSocketDisconnect:
 
144
  pass
 
145
  except Exception as e:
 
146
  print("Error in /ws/tts:", e)
147
  await ws.close(code=1011)
148
+
149
+ if __name__ == "__main__":
150
+ import uvicorn
151
+ uvicorn.run("app:app", host="0.0.0.0", port=7860)