Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -12,51 +12,55 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
12 |
if HF_TOKEN:
|
13 |
login(HF_TOKEN)
|
14 |
|
15 |
-
# —
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# — FastAPI instanziieren —
|
19 |
app = FastAPI()
|
20 |
|
21 |
-
# —
|
22 |
@app.get("/")
|
23 |
async def read_root():
|
24 |
-
return {"message": "
|
25 |
|
26 |
# — Modelle bei Startup laden —
|
27 |
@app.on_event("startup")
|
28 |
async def load_models():
|
29 |
global tokenizer, model, snac
|
|
|
30 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
31 |
-
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
33 |
model = AutoModelForCausalLM.from_pretrained(
|
34 |
-
|
35 |
device_map="auto",
|
36 |
-
torch_dtype=torch.bfloat16 if device
|
37 |
low_cpu_mem_usage=True
|
38 |
)
|
39 |
-
|
40 |
-
model.config.pad_token_id = model.config.eos_token_id
|
41 |
-
|
42 |
-
# — Hilfsfunktionen —
|
43 |
-
START_TOKEN = 128259
|
44 |
-
END_TOKENS = [128009, 128260]
|
45 |
-
RESET_TOKEN = 128257
|
46 |
-
AUDIO_OFFSET = 128266
|
47 |
-
EOS_TOKEN = model.config.eos_token_id if 'model' in globals() else 128258
|
48 |
|
|
|
49 |
def prepare_inputs(text: str, voice: str):
|
50 |
-
prompt
|
51 |
-
|
52 |
-
start
|
53 |
-
end
|
54 |
-
|
55 |
-
|
56 |
-
return
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
l1, l2, l3 = [], [], []
|
61 |
b = block
|
62 |
l1.append(b[0])
|
@@ -72,68 +76,76 @@ def decode_block(block: list[int]):
|
|
72 |
torch.tensor(l3, device=device).unsqueeze(0),
|
73 |
]
|
74 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# — WebSocket‑Endpoint für TTS Streaming —
|
78 |
@app.websocket("/ws/tts")
|
79 |
async def tts_ws(ws: WebSocket):
|
80 |
await ws.accept()
|
81 |
try:
|
82 |
-
|
83 |
-
req
|
84 |
text = req.get("text", "")
|
85 |
voice = req.get("voice", "Jakob")
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
collected = []
|
90 |
-
|
91 |
-
# Token‑für‑Token mit eigener Sampling‑Schleife
|
92 |
-
while True:
|
93 |
-
out = model(
|
94 |
-
input_ids=input_ids if past_kvs is None else None,
|
95 |
-
attention_mask=attention_mask if past_kvs is None else None,
|
96 |
-
past_key_values=past_kvs,
|
97 |
-
use_cache=True,
|
98 |
-
)
|
99 |
-
logits = out.logits[:, -1, :]
|
100 |
-
past_kvs = out.past_key_values
|
101 |
-
|
102 |
-
# Sampling
|
103 |
-
probs = torch.softmax(logits, dim=-1)
|
104 |
-
nxt = torch.multinomial(probs, num_samples=1).item()
|
105 |
-
|
106 |
-
# EOS → fertig
|
107 |
-
if nxt == EOS_TOKEN:
|
108 |
-
break
|
109 |
-
# RESET → alte Sammlung verwerfen
|
110 |
-
if nxt == RESET_TOKEN:
|
111 |
-
collected = []
|
112 |
-
# und input_ids für nächsten Durchlauf auf None setzen
|
113 |
-
input_ids = None
|
114 |
-
attention_mask = None
|
115 |
-
continue
|
116 |
|
117 |
-
# Audio‑Code abziehen & sammeln
|
118 |
-
collected.append(nxt - AUDIO_OFFSET)
|
119 |
-
# jede 7 Codes → dekodieren & streamen
|
120 |
-
if len(collected) == 7:
|
121 |
-
pcm = decode_block(collected)
|
122 |
-
collected = []
|
123 |
-
await ws.send_bytes(pcm)
|
124 |
-
|
125 |
-
# nur beim allerersten Schritt mit IDs arbeiten
|
126 |
-
input_ids = None
|
127 |
-
attention_mask = None
|
128 |
-
|
129 |
-
# Stream sauber beenden
|
130 |
await ws.close()
|
131 |
-
|
132 |
except WebSocketDisconnect:
|
133 |
-
# Client hat Disconnect gemacht → nichts tun
|
134 |
pass
|
135 |
-
|
136 |
except Exception as e:
|
137 |
-
# auf Fehler 1011 senden
|
138 |
print("Error in /ws/tts:", e)
|
139 |
await ws.close(code=1011)
|
|
|
|
|
|
|
|
|
|
12 |
if HF_TOKEN:
|
13 |
login(HF_TOKEN)
|
14 |
|
15 |
+
# — Gerät wählen —
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
+
# — Modell‑Parameter —
|
19 |
+
MODEL_NAME = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
20 |
+
START_MARKER = 128259 # <|startoftranscript|>
|
21 |
+
RESTART_MARKER = 128257 # <|startoftranscript_again|>
|
22 |
+
EOS_TOKEN = 128258 # <|endoftranscript|>
|
23 |
+
AUDIO_TOKEN_OFFSET = 128266 # Offset zum Zurückrechnen
|
24 |
+
BLOCK_TOKENS = 7 # SNAC erwartet 7 Audio‑Tokens pro Block
|
25 |
+
CHUNK_TOKENS = 50 # Anzahl neuer Tokens pro Generate‑Runde
|
26 |
+
|
27 |
# — FastAPI instanziieren —
|
28 |
app = FastAPI()
|
29 |
|
30 |
+
# — Damit GET / nicht 404 wirft —
|
31 |
@app.get("/")
|
32 |
async def read_root():
|
33 |
+
return {"message": "Orpheus TTS Server ist live 🎙️"}
|
34 |
|
35 |
# — Modelle bei Startup laden —
|
36 |
@app.on_event("startup")
|
37 |
async def load_models():
|
38 |
global tokenizer, model, snac
|
39 |
+
# SNAC laden
|
40 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
41 |
+
# Tokenizer
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
43 |
+
# TTS‑LM
|
44 |
model = AutoModelForCausalLM.from_pretrained(
|
45 |
+
MODEL_NAME,
|
46 |
device_map="auto",
|
47 |
+
torch_dtype=torch.bfloat16 if device=="cuda" else None,
|
48 |
low_cpu_mem_usage=True
|
49 |
)
|
50 |
+
model.config.pad_token_id = EOS_TOKEN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# — Eingabe aufbereiten —
|
53 |
def prepare_inputs(text: str, voice: str):
|
54 |
+
prompt = f"{voice}: {text}"
|
55 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
56 |
+
start = torch.tensor([[START_MARKER]], device=device)
|
57 |
+
end = torch.tensor([[128009, EOS_TOKEN]], device=device)
|
58 |
+
ids = torch.cat([start, input_ids, end], dim=1)
|
59 |
+
attn_mask = torch.ones_like(ids)
|
60 |
+
return ids, attn_mask
|
61 |
+
|
62 |
+
# — Aus 7 Audio‑Tokens ein PCM‑Block erzeugen —
|
63 |
+
def decode_block(block: list[int]) -> bytes:
|
64 |
l1, l2, l3 = [], [], []
|
65 |
b = block
|
66 |
l1.append(b[0])
|
|
|
76 |
torch.tensor(l3, device=device).unsqueeze(0),
|
77 |
]
|
78 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
79 |
+
pcm16 = (audio * 32767).astype("int16").tobytes()
|
80 |
+
return pcm16
|
81 |
+
|
82 |
+
# — Generator: kleine Chunks token‑weise erzeugen und block‑weise dekodieren —
|
83 |
+
async def generate_and_stream(ws: WebSocket, ids, attn_mask):
|
84 |
+
buffer: list[int] = []
|
85 |
+
past_kvs = None
|
86 |
+
|
87 |
+
while True:
|
88 |
+
# wir rufen model.generate in Häppchen auf
|
89 |
+
outputs = model.generate(
|
90 |
+
input_ids = ids if past_kvs is None else None,
|
91 |
+
attention_mask = attn_mask if past_kvs is None else None,
|
92 |
+
past_key_values= past_kvs,
|
93 |
+
use_cache = True,
|
94 |
+
max_new_tokens = CHUNK_TOKENS,
|
95 |
+
do_sample = True,
|
96 |
+
temperature = 0.7,
|
97 |
+
top_p = 0.95,
|
98 |
+
repetition_penalty = 1.1,
|
99 |
+
eos_token_id = EOS_TOKEN,
|
100 |
+
pad_token_id = EOS_TOKEN,
|
101 |
+
return_dict_in_generate = True,
|
102 |
+
output_scores = False,
|
103 |
+
)
|
104 |
+
|
105 |
+
# update past_kvs
|
106 |
+
past_kvs = outputs.past_key_values
|
107 |
+
|
108 |
+
# erhalte nur die gerade neu generierten Token
|
109 |
+
seq = outputs.sequences[0]
|
110 |
+
new_tokens = seq[-CHUNK_TOKENS:].tolist() if past_kvs is not None else seq[ids.shape[-1]:].tolist()
|
111 |
+
|
112 |
+
for tok in new_tokens:
|
113 |
+
# Neustart bei erneutem START‑Marker
|
114 |
+
if tok == RESTART_MARKER:
|
115 |
+
buffer = []
|
116 |
+
continue
|
117 |
+
# Ende
|
118 |
+
if tok == EOS_TOKEN:
|
119 |
+
return
|
120 |
+
# Audio‑Code berechnen
|
121 |
+
buffer.append(tok - AUDIO_TOKEN_OFFSET)
|
122 |
+
# sobald 7 Audio‑Tokens, dekodieren und streamen
|
123 |
+
if len(buffer) >= BLOCK_TOKENS:
|
124 |
+
block = buffer[:BLOCK_TOKENS]
|
125 |
+
buffer = buffer[BLOCK_TOKENS:]
|
126 |
+
pcm = decode_block(block)
|
127 |
+
await ws.send_bytes(pcm)
|
128 |
|
129 |
# — WebSocket‑Endpoint für TTS Streaming —
|
130 |
@app.websocket("/ws/tts")
|
131 |
async def tts_ws(ws: WebSocket):
|
132 |
await ws.accept()
|
133 |
try:
|
134 |
+
data = await ws.receive_text()
|
135 |
+
req = json.loads(data)
|
136 |
text = req.get("text", "")
|
137 |
voice = req.get("voice", "Jakob")
|
138 |
|
139 |
+
ids, attn_mask = prepare_inputs(text, voice)
|
140 |
+
await generate_and_stream(ws, ids, attn_mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
await ws.close()
|
|
|
143 |
except WebSocketDisconnect:
|
|
|
144 |
pass
|
|
|
145 |
except Exception as e:
|
|
|
146 |
print("Error in /ws/tts:", e)
|
147 |
await ws.close(code=1011)
|
148 |
+
|
149 |
+
if __name__ == "__main__":
|
150 |
+
import uvicorn
|
151 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|