Tomtom84's picture
Update app.py
a09ea48 verified
raw
history blame
3.95 kB
import os
import json
import asyncio
import torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from dotenv import load_dotenv
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
# — Environment & HF‑Auth —
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# — Device & Modelle laden —
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading SNAC model...")
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
model_name = "canopylabs/3b-de-ft-research_release"
print("Loading Orpheus model...")
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.bfloat16
).to(device)
model.config.pad_token_id = model.config.eos_token_id
tokenizer = AutoTokenizer.from_pretrained(model_name)
# — Hilfsfunktionen —
def process_prompt(text: str, voice: str):
prompt = f"{voice}: {text}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start = torch.tensor([[128259]], dtype=torch.int64)
end = torch.tensor([[128009, 128260]], dtype=torch.int64)
ids = torch.cat([start, input_ids, end], dim=1).to(device)
mask = torch.ones_like(ids).to(device)
return ids, mask
def parse_output(generated_ids: torch.LongTensor):
token_to_find = 128257
token_to_remove = 128258
idxs = (generated_ids == token_to_find).nonzero(as_tuple=True)[1]
if idxs.numel() > 0:
last = idxs[-1].item()
cropped = generated_ids[:, last+1:]
else:
cropped = generated_ids
# remove padding token markers
rows = []
for row in cropped:
row = row[row != token_to_remove]
rows.append(row)
flat = rows[0].tolist()
# adjust and regroup
layer1, layer2, layer3 = [], [], []
for i in range(len(flat)//7):
base = flat[7*i:7*i+7]
layer1.append(base[0])
layer2.append(base[1]-4096)
layer3.extend([base[2]-(2*4096), base[3]-(3*4096)])
layer2.append(base[4]-4*4096)
layer3.extend([base[5]-(5*4096), base[6]-(6*4096)])
codes = [
torch.tensor(layer1, device=device).unsqueeze(0),
torch.tensor(layer2, device=device).unsqueeze(0),
torch.tensor(layer3, device=device).unsqueeze(0),
]
audio = snac.decode(codes).detach().squeeze().cpu().numpy()
return audio # float32 numpy at 24000 Hz
# — FastAPI + WebSocket-Endpoint —
app = FastAPI()
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
while True:
msg = await ws.receive_text()
data = json.loads(msg)
text = data.get("text", "")
voice = data.get("voice", "jana")
# Generate tokens
ids, mask = process_prompt(text, voice)
with torch.no_grad():
gen_ids = model.generate(
input_ids=ids,
attention_mask=mask,
max_new_tokens=1200,
do_sample=True,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1,
eos_token_id=128258,
)
# Convert to waveform
audio = parse_output(gen_ids)
# PCM16 conversion & chunking
pcm16 = (audio * 32767).astype('int16').tobytes()
# 0.1 s @24 kHz = 2400 samples = 4800 bytes
chunk_size = 2400 * 2
for i in range(0, len(pcm16), chunk_size):
await ws.send_bytes(pcm16[i:i+chunk_size])
await asyncio.sleep(0.1) # pacing
except WebSocketDisconnect:
print("Client disconnected")
except Exception as e:
print("Error in /ws/tts:", e)
await ws.close(code=1011)
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)