Spaces:
Paused
Paused
# app.py βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
import os, json, asyncio, torch | |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect | |
from huggingface_hub import login | |
from transformers import (AutoTokenizer, AutoModelForCausalLM, LogitsProcessor) | |
from transformers.generation.utils import Cache | |
from snac import SNAC | |
# ββ 0. HFβLogin & Device βββββββββββββββββββββββββββββββββββββββββββββ | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN: | |
login(HF_TOKEN) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
#Β FlashβAttentionβBug in PyTorchΒ 2.2.x umgehen | |
torch.backends.cuda.enable_flash_sdp(False) | |
# ββ 1. Konstanten ββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1" | |
CHUNK_TOKENS = 50 # pro miniβgenerate | |
START_TOKEN = 128259 | |
NEW_BLOCK_TOKEN = 128257 | |
EOS_TOKEN = 128258 | |
AUDIO_BASE = 128266 # erster AudioβCode | |
VALID_AUDIO_IDS = torch.arange(AUDIO_BASE, AUDIO_BASE + 4096) | |
# ββ 2. Dynamischer LogitβMasker ββββββββββββββββββββββββββββββββββββββ | |
class DynamicAudioMask(LogitsProcessor): | |
""" | |
blockt EOS, bis mindestens `min_audio_blocks` gesendet wurden | |
""" | |
def __init__(self, audio_ids: torch.Tensor, min_audio_blocks: int = 1): | |
super().__init__() | |
self.audio_ids = audio_ids | |
self.ctrl_ids = torch.tensor([NEW_BLOCK_TOKEN], device=audio_ids.device) | |
self.min_blocks = min_audio_blocks | |
self.blocks_done = 0 | |
def __call__(self, input_ids, scores): | |
allowed = torch.cat([self.audio_ids, self.ctrl_ids]) | |
if self.blocks_done >= self.min_blocks: # jetzt darf EOS dazu | |
allowed = torch.cat([allowed, torch.tensor([EOS_TOKEN], device=scores.device)]) | |
mask = torch.full_like(scores, float("-inf")) | |
mask[:, allowed] = 0 | |
return scores + mask | |
# ββ 3. FastAPI GrundgerΓΌst βββββββββββββββββββββββββββββββββββββββββββ | |
app = FastAPI() | |
async def ping(): | |
return {"msg": "OrpheusβTTS up & running"} | |
async def load_models(): | |
global tok, model, snac, masker | |
print("β³Β Lade Modelle β¦") | |
tok = AutoTokenizer.from_pretrained(REPO) | |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) | |
model = AutoModelForCausalLM.from_pretrained( | |
REPO, | |
low_cpu_mem_usage=True, | |
device_map={"": 0} if device == "cuda" else None, | |
torch_dtype=torch.bfloat16 if device == "cuda" else None, | |
) | |
model.config.pad_token_id = model.config.eos_token_id | |
model.config.use_cache = True | |
masker = DynamicAudioMask(VALID_AUDIO_IDS.to(device)) | |
print("β Β Modelle geladen") | |
# ββ 4. HilfsβFunktionen ββββββββββββββββββββββββββββββββββββββββββββββ | |
def build_inputs(text: str, voice: str): | |
prompt = f"{voice}: {text}" | |
ids = tok(prompt, return_tensors="pt").input_ids.to(device) | |
ids = torch.cat( | |
[ torch.tensor([[START_TOKEN]], device=device), | |
ids, | |
torch.tensor([[128009, 128260]], device=device) ], | |
dim=1, | |
) | |
attn = torch.ones_like(ids) | |
return ids, attn | |
def decode_block(block7: list[int]) -> bytes: | |
l1, l2, l3 = [], [], [] | |
b = block7 | |
l1.append(b[0]) | |
l2.append(b[1] - 4096) | |
l3.extend([b[2] - 8192, b[3] - 12288]) | |
l2.append(b[4] - 16384) | |
l3.extend([b[5] - 20480, b[6] - 24576]) | |
codes = [ | |
torch.tensor(l1, device=device).unsqueeze(0), | |
torch.tensor(l2, device=device).unsqueeze(0), | |
torch.tensor(l3, device=device).unsqueeze(0), | |
] | |
audio = snac.decode(codes).squeeze().cpu().numpy() | |
return (audio * 32767).astype("int16").tobytes() | |
# ββ 5. WebSocketβTTSβEndpoint βββββββββββββββββββββββββββββββββββββββ | |
async def tts(ws: WebSocket): | |
await ws.accept() | |
try: | |
req = json.loads(await ws.receive_text()) | |
text = req.get("text", "") | |
voice = req.get("voice", "Jakob") | |
ids, attn = build_inputs(text, voice) | |
past = None | |
buf = [] | |
while True: | |
out = model.generate( | |
input_ids = ids if past is None else None, | |
attention_mask = attn if past is None else None, | |
past_key_values = past, | |
max_new_tokens = CHUNK_TOKENS, | |
logits_processor= [masker], # βΊ dynamischer Masker | |
do_sample=True, temperature=0.7, top_p=0.95, | |
return_dict_in_generate=True, | |
use_cache=True, | |
) | |
# Cache & neue Tokens extrahieren -------------------------------- | |
pkv = out.past_key_values | |
if isinstance(pkv, Cache): # HFΒ >=Β 4.47 | |
pkv = pkv.to_legacy() | |
past = pkv | |
new = out.sequences[0, -out.num_generated_tokens :].tolist() | |
print("new tokens:", new[:20]) # DebugβAusgabe | |
# ---------------------------------------------------------------- | |
for t in new: | |
if t == EOS_TOKEN: | |
raise StopIteration | |
if t == NEW_BLOCK_TOKEN: | |
buf.clear() | |
continue | |
buf.append(t - AUDIO_BASE) | |
if len(buf) == 7: | |
await ws.send_bytes(decode_block(buf)) | |
buf.clear() | |
masker.blocks_done += 1 # βΊΒ jetzt darf ggf. EOS | |
# nΓ€chsten generateβStep nur noch mit Cache, keine neuen ids | |
ids, attn = None, None | |
except (StopIteration, WebSocketDisconnect): | |
pass | |
except Exception as e: | |
print("βΒ WSβError:", e) | |
if ws.client_state.name != "DISCONNECTED": | |
await ws.close(code=1011) | |
finally: | |
if ws.client_state.name != "DISCONNECTED": | |
try: | |
await ws.close() | |
except RuntimeError: | |
pass # CloseβFrame war schon raus | |
# ββ 6. Lokaler Start (uvicorn) βββββββββββββββββββββββββββββββββββββββ | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run("app:app", host="0.0.0.0", port=7860) | |