Tomtom84's picture
Update app.py
1b79dec verified
raw
history blame
4.9 kB
import os
import json
import asyncio
import torch
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from dotenv import load_dotenv
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login, snapshot_download
# — ENV & HF‑AUTH —
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# — Debug: CPU‑Modus zum Entwickeln, später wieder "cuda" —
#device = "cuda" if torch.cuda.is_available() else "cpu"
device = "cpu"
# — Modelle laden —
print("Loading SNAC model...")
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
model_name = "canopylabs/3b-de-ft-research_release"
# optional: explizites snapshot_download (entfernt große Dateien)
snapshot_download(
repo_id=model_name,
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
ignore_patterns=[
"optimizer.pt", "pytorch_model.bin", "training_args.bin",
"scheduler.pt", "tokenizer.json", "tokenizer_config.json",
"special_tokens_map.json", "vocab.json", "merges.txt", "tokenizer.*"
]
)
print("Loading Orpheus model...")
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.bfloat16
).to(device)
model.config.pad_token_id = model.config.eos_token_id
tokenizer = AutoTokenizer.from_pretrained(model_name)
# — Hilfsfunktionen —
def process_prompt(text: str, voice: str):
prompt = f"{voice}: {text}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start = torch.tensor([[128259]], dtype=torch.int64)
end = torch.tensor([[128009, 128260]], dtype=torch.int64)
ids = torch.cat([start, input_ids, end], dim=1).to(device)
mask = torch.ones_like(ids).to(device)
return ids, mask
def parse_output(generated_ids: torch.LongTensor):
"""Extrahiere rohe Tokenliste nach dem letzten 128257-Start-Token."""
token_to_find = 128257
token_to_remove = 128258
# 1) Finde letztes Start-Token, croppe
idxs = (generated_ids == token_to_find).nonzero(as_tuple=True)[1]
if idxs.numel() > 0:
cut = idxs[-1].item() + 1
cropped = generated_ids[:, cut:]
else:
cropped = generated_ids
# 2) Entferne Padding-Markierungen
rows = []
for row in cropped:
rows.append(row[row != token_to_remove])
# 3) Flache Liste zurückgeben
return rows[0].tolist()
def redistribute_codes(code_list: list[int], snac_model: SNAC):
"""Verteile die Codes auf drei Layer, dekodiere in Audio."""
layer1, layer2, layer3 = [], [], []
for i in range((len(code_list) + 1) // 7):
base = code_list[7*i : 7*i+7]
layer1.append(base[0])
layer2.append(base[1] - 4096)
layer3.append(base[2] - 2*4096)
layer3.append(base[3] - 3*4096)
layer2.append(base[4] - 4*4096)
layer3.append(base[5] - 5*4096)
layer3.append(base[6] - 6*4096)
dev = next(snac_model.parameters()).device
codes = [
torch.tensor(layer1, device=dev).unsqueeze(0),
torch.tensor(layer2, device=dev).unsqueeze(0),
torch.tensor(layer3, device=dev).unsqueeze(0),
]
audio = snac_model.decode(codes)
return audio.detach().squeeze().cpu().numpy() # float32 @24 kHz
# — FastAPI + WebSocket-Endpoint —
app = FastAPI()
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
while True:
msg = await ws.receive_text()
data = json.loads(msg)
text = data.get("text", "")
voice = data.get("voice", "jana")
# 1) Prompt → Tokens
ids, mask = process_prompt(text, voice)
# 2) Token-Generation (erst klein testen!)
gen_ids = model.generate(
input_ids=ids,
attention_mask=mask,
max_new_tokens=200, # zum Debuggen klein halten
do_sample=True,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.1,
eos_token_id=128258,
)
# 3) Tokens → Code-Liste → Audio
code_list = parse_output(gen_ids)
audio_np = redistribute_codes(code_list, snac)
# 4) PCM16-Bytes und Stream in 0.1s-Chunks
pcm16 = (audio_np * 32767).astype("int16").tobytes()
chunk = 2400 * 2 # 2400 samples @24kHz → 0.1s * 2 bytes
for i in range(0, len(pcm16), chunk):
await ws.send_bytes(pcm16[i : i+chunk])
await asyncio.sleep(0.1)
except WebSocketDisconnect:
print("Client disconnected")
except Exception as e:
print("Error in /ws/tts:", e)
await ws.close(code=1011)
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)