Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,13 @@ MODELS = {'enro': 'BlackKakapo/opus-mt-en-ro',
|
|
12 |
'roen': 'BlackKakapo/opus-mt-ro-en',
|
13 |
'gemma': 'Gargaz/gemma-2b-romanian-better',
|
14 |
'paraphrase': 'tuner007/pegasus_paraphrase'}
|
15 |
-
EMBEDDING_MODELS =
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
@app.get("/")
|
18 |
def index(request: Request):
|
@@ -113,10 +119,11 @@ def bergamot(input_text: list[str] = Query(description="Input list of strings"),
|
|
113 |
return {"input": input_text, "translated_text": response, "message_text": message_text}
|
114 |
|
115 |
@app.get("/embed", operation_id="get_embeddings", description="Embed text", tags=["embed"], summary="Embed text")
|
116 |
-
def embed(text: str, model: str =
|
117 |
model = SentenceTransformer(model)
|
118 |
embeddings = model.encode(text)
|
119 |
-
print(embeddings.shape)
|
|
|
120 |
return {"input": text, "embeddings": embeddings.tolist(), "shape": embeddings.shape}
|
121 |
|
122 |
# Create an MCP server based on this app
|
|
|
12 |
'roen': 'BlackKakapo/opus-mt-ro-en',
|
13 |
'gemma': 'Gargaz/gemma-2b-romanian-better',
|
14 |
'paraphrase': 'tuner007/pegasus_paraphrase'}
|
15 |
+
EMBEDDING_MODELS = {"all-MiniLM-L6-v2":384,
|
16 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2":384,
|
17 |
+
"sentence-transformers/distiluse-base-multilingual-cased-v2":512,
|
18 |
+
"sentence-transformers/stsb-xlm-r-multilingual":768,
|
19 |
+
"sentence-transformers/use-cmlm-multilingual":768,
|
20 |
+
"sentence-transformers/paraphrase-multilingual-mpnet-base-v2":768}
|
21 |
+
EMBEDDING_MODEL = "sentence-transformers/distiluse-base-multilingual-cased-v2"
|
22 |
|
23 |
@app.get("/")
|
24 |
def index(request: Request):
|
|
|
119 |
return {"input": input_text, "translated_text": response, "message_text": message_text}
|
120 |
|
121 |
@app.get("/embed", operation_id="get_embeddings", description="Embed text", tags=["embed"], summary="Embed text")
|
122 |
+
def embed(text: str, model: str = EMBEDDING_MODEL):
|
123 |
model = SentenceTransformer(model)
|
124 |
embeddings = model.encode(text)
|
125 |
+
print(embeddings.shape, len(embeddings))
|
126 |
+
# similarities = model.similarity(embeddings, embeddings)
|
127 |
return {"input": text, "embeddings": embeddings.tolist(), "shape": embeddings.shape}
|
128 |
|
129 |
# Create an MCP server based on this app
|