TiberiuCristianLeon commited on
Commit
d1936ad
·
verified ·
1 Parent(s): 09f4a29

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -12,7 +12,13 @@ MODELS = {'enro': 'BlackKakapo/opus-mt-en-ro',
12
  'roen': 'BlackKakapo/opus-mt-ro-en',
13
  'gemma': 'Gargaz/gemma-2b-romanian-better',
14
  'paraphrase': 'tuner007/pegasus_paraphrase'}
15
- EMBEDDING_MODELS = ["all-MiniLM-L6-v2", "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"]
 
 
 
 
 
 
16
 
17
  @app.get("/")
18
  def index(request: Request):
@@ -113,10 +119,11 @@ def bergamot(input_text: list[str] = Query(description="Input list of strings"),
113
  return {"input": input_text, "translated_text": response, "message_text": message_text}
114
 
115
  @app.get("/embed", operation_id="get_embeddings", description="Embed text", tags=["embed"], summary="Embed text")
116
- def embed(text: str, model: str = EMBEDDING_MODELS[1]):
117
  model = SentenceTransformer(model)
118
  embeddings = model.encode(text)
119
- print(embeddings.shape)
 
120
  return {"input": text, "embeddings": embeddings.tolist(), "shape": embeddings.shape}
121
 
122
  # Create an MCP server based on this app
 
12
  'roen': 'BlackKakapo/opus-mt-ro-en',
13
  'gemma': 'Gargaz/gemma-2b-romanian-better',
14
  'paraphrase': 'tuner007/pegasus_paraphrase'}
15
+ EMBEDDING_MODELS = {"all-MiniLM-L6-v2":384,
16
+ "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2":384,
17
+ "sentence-transformers/distiluse-base-multilingual-cased-v2":512,
18
+ "sentence-transformers/stsb-xlm-r-multilingual":768,
19
+ "sentence-transformers/use-cmlm-multilingual":768,
20
+ "sentence-transformers/paraphrase-multilingual-mpnet-base-v2":768}
21
+ EMBEDDING_MODEL = "sentence-transformers/distiluse-base-multilingual-cased-v2"
22
 
23
  @app.get("/")
24
  def index(request: Request):
 
119
  return {"input": input_text, "translated_text": response, "message_text": message_text}
120
 
121
  @app.get("/embed", operation_id="get_embeddings", description="Embed text", tags=["embed"], summary="Embed text")
122
+ def embed(text: str, model: str = EMBEDDING_MODEL):
123
  model = SentenceTransformer(model)
124
  embeddings = model.encode(text)
125
+ print(embeddings.shape, len(embeddings))
126
+ # similarities = model.similarity(embeddings, embeddings)
127
  return {"input": text, "embeddings": embeddings.tolist(), "shape": embeddings.shape}
128
 
129
  # Create an MCP server based on this app