# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import json import math import os import random import sys import tempfile from dataclasses import dataclass from http import HTTPStatus from typing import Optional, Union import dashscope import torch from PIL import Image try: from flash_attn import flash_attn_varlen_func FLASH_VER = 2 except ModuleNotFoundError: flash_attn_varlen_func = None # in compatible with CPU machines FLASH_VER = None LM_EN_SYS_PROMPT = "You are an advanced AI model tasked with generating and extending structured and detailed video captions. You must respond in the language used by the user." @dataclass class PromptOutput(object): status: bool prompt: str seed: int system_prompt: str message: str def add_custom_field(self, key: str, value) -> None: self.__setattr__(key, value) class PromptExpander: def __init__(self, model_name, is_vl=False, device=0, **kwargs): self.model_name = model_name self.is_vl = is_vl self.device = device def extend_with_img(self, prompt, system_prompt, image=None, seed=-1, *args, **kwargs): pass def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs): pass def decide_system_prompt(self, tar_lang="en"): return LM_EN_SYS_PROMPT def __call__(self, prompt, tar_lang="en", image=None, seed=-1, *args, **kwargs): system_prompt = self.decide_system_prompt(tar_lang=tar_lang) if seed < 0: seed = random.randint(0, sys.maxsize) if image is not None and self.is_vl: return self.extend_with_img( prompt, system_prompt, image=image, seed=seed, *args, **kwargs) elif not self.is_vl: return self.extend(prompt, system_prompt, seed, *args, **kwargs) else: raise NotImplementedError class QwenPromptExpander(PromptExpander): def __init__(self, model_name=None, device=0, is_vl=False, **kwargs): ''' Args: model_name: Use predefined model names such as 'QwenVL2.5_7B' and 'Qwen2.5_14B', which are specific versions of the Qwen model. Alternatively, you can use the local path to a downloaded model or the model name from Hugging Face." Detailed Breakdown: Predefined Model Names: * 'QwenVL2.5_7B' and 'Qwen2.5_14B' are specific versions of the Qwen model. Local Path: * You can provide the path to a model that you have downloaded locally. Hugging Face Model Name: * You can also specify the model name from Hugging Face's model hub. is_vl: A flag indicating whether the task involves visual-language processing. **kwargs: Additional keyword arguments that can be passed to the function or method. ''' if model_name is None: model_name = 'ZuluVision/MoviiGen1.1_Prompt_Rewriter' super().__init__(model_name, is_vl, device, **kwargs) self.model_name = model_name if self.is_vl: raise NotImplementedError("VL is not supported") from transformers import AutoModelForCausalLM, AutoTokenizer self.model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16 if "AWQ" in self.model_name else "auto", attn_implementation="flash_attention_2" if FLASH_VER == 2 else None, device_map="cpu") self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs): self.model = self.model.to(self.device) messages = [{ "role": "system", "content": system_prompt }, { "role": "user", "content": prompt }] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True) model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) generated_ids = self.model.generate(**model_inputs, max_new_tokens=512) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip( model_inputs.input_ids, generated_ids) ] expanded_prompt = self.tokenizer.batch_decode( generated_ids, skip_special_tokens=True)[0] self.model = self.model.to("cpu") return PromptOutput( status=True, prompt=expanded_prompt, seed=seed, system_prompt=system_prompt, message=json.dumps({"content": expanded_prompt}, ensure_ascii=False)) def extend_with_img(self, prompt, system_prompt, image: Union[Image.Image, str] = None, seed=-1, *args, **kwargs): self.model = self.model.to(self.device) messages = [{ 'role': 'system', 'content': [{ "type": "text", "text": system_prompt }] }, { "role": "user", "content": [ { "type": "image", "image": image, }, { "type": "text", "text": prompt }, ], }] # Preparation for inference text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = self.process_vision_info(messages) inputs = self.processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(self.device) # Inference: Generation of the output generated_ids = self.model.generate(**inputs, max_new_tokens=512) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] expanded_prompt = self.processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] self.model = self.model.to("cpu") return PromptOutput( status=True, prompt=expanded_prompt, seed=seed, system_prompt=system_prompt, message=json.dumps({"content": expanded_prompt}, ensure_ascii=False)) if __name__ == "__main__": seed = 100 prompt = "夏日海滩度假风格,一只戴着墨镜的白色猫咪坐在冲浪板上。猫咪毛发蓬松,表情悠闲,直视镜头。背景是模糊的海滩景色,海水清澈,远处有绿色的山丘和蓝天白云。猫咪的姿态自然放松,仿佛在享受海风和阳光。近景特写,强调猫咪的细节和海滩的清新氛围。" en_prompt = "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." # test cases for prompt extend ds_model_name = "qwen-plus" # for qwenmodel, you can download the model form modelscope or huggingface and use the model path as model_name qwen_model_name = "./models/Qwen2.5-14B-Instruct/" # VRAM: 29136MiB # qwen_model_name = "./models/Qwen2.5-14B-Instruct-AWQ/" # VRAM: 10414MiB # test dashscope api dashscope_prompt_expander = DashScopePromptExpander( model_name=ds_model_name) dashscope_result = dashscope_prompt_expander(prompt, tar_lang="ch") print("LM dashscope result -> ch", dashscope_result.prompt) #dashscope_result.system_prompt) dashscope_result = dashscope_prompt_expander(prompt, tar_lang="en") print("LM dashscope result -> en", dashscope_result.prompt) #dashscope_result.system_prompt) dashscope_result = dashscope_prompt_expander(en_prompt, tar_lang="ch") print("LM dashscope en result -> ch", dashscope_result.prompt) #dashscope_result.system_prompt) dashscope_result = dashscope_prompt_expander(en_prompt, tar_lang="en") print("LM dashscope en result -> en", dashscope_result.prompt) #dashscope_result.system_prompt) # # test qwen api qwen_prompt_expander = QwenPromptExpander( model_name=qwen_model_name, is_vl=False, device=0) qwen_result = qwen_prompt_expander(prompt, tar_lang="ch") print("LM qwen result -> ch", qwen_result.prompt) #qwen_result.system_prompt) qwen_result = qwen_prompt_expander(prompt, tar_lang="en") print("LM qwen result -> en", qwen_result.prompt) # qwen_result.system_prompt) qwen_result = qwen_prompt_expander(en_prompt, tar_lang="ch") print("LM qwen en result -> ch", qwen_result.prompt) #, qwen_result.system_prompt) qwen_result = qwen_prompt_expander(en_prompt, tar_lang="en") print("LM qwen en result -> en", qwen_result.prompt) # , qwen_result.system_prompt) # test case for prompt-image extend ds_model_name = "qwen-vl-max" #qwen_model_name = "./models/Qwen2.5-VL-3B-Instruct/" #VRAM: 9686MiB qwen_model_name = "./models/Qwen2.5-VL-7B-Instruct-AWQ/" # VRAM: 8492 image = "./examples/i2v_input.JPG" # test dashscope api why image_path is local directory; skip dashscope_prompt_expander = DashScopePromptExpander( model_name=ds_model_name, is_vl=True) dashscope_result = dashscope_prompt_expander( prompt, tar_lang="ch", image=image, seed=seed) print("VL dashscope result -> ch", dashscope_result.prompt) #, dashscope_result.system_prompt) dashscope_result = dashscope_prompt_expander( prompt, tar_lang="en", image=image, seed=seed) print("VL dashscope result -> en", dashscope_result.prompt) # , dashscope_result.system_prompt) dashscope_result = dashscope_prompt_expander( en_prompt, tar_lang="ch", image=image, seed=seed) print("VL dashscope en result -> ch", dashscope_result.prompt) #, dashscope_result.system_prompt) dashscope_result = dashscope_prompt_expander( en_prompt, tar_lang="en", image=image, seed=seed) print("VL dashscope en result -> en", dashscope_result.prompt) # , dashscope_result.system_prompt) # test qwen api qwen_prompt_expander = QwenPromptExpander( model_name=qwen_model_name, is_vl=True, device=0) qwen_result = qwen_prompt_expander( prompt, tar_lang="ch", image=image, seed=seed) print("VL qwen result -> ch", qwen_result.prompt) #, qwen_result.system_prompt) qwen_result = qwen_prompt_expander( prompt, tar_lang="en", image=image, seed=seed) print("VL qwen result ->en", qwen_result.prompt) # , qwen_result.system_prompt) qwen_result = qwen_prompt_expander( en_prompt, tar_lang="ch", image=image, seed=seed) print("VL qwen vl en result -> ch", qwen_result.prompt) #, qwen_result.system_prompt) qwen_result = qwen_prompt_expander( en_prompt, tar_lang="en", image=image, seed=seed) print("VL qwen vl en result -> en", qwen_result.prompt) # , qwen_result.system_prompt)