File size: 6,797 Bytes
c02b4bf 6113980 b26b0a3 1c581ef c02b4bf 6113980 07026cb f06025d 138851d 07026cb 138851d a880370 07026cb 2742bc2 02412d9 6113980 1c581ef 6113980 1c581ef 6113980 d3ae86a 1c581ef c02b4bf d3ae86a c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 1c581ef b518cbb 7502cc2 b518cbb c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 1c581ef c02b4bf 4dfdae4 1c581ef c02b4bf 1c581ef c02b4bf 5efc135 1c581ef c02b4bf 1c581ef 5efc135 1c581ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import gradio as gr
import json
from huggingface_hub import InferenceClient
import gspread
from google.oauth2 import service_account
from datetime import datetime
import chromadb
# Google Sheets setup
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
key1 = os.getenv("key1")
key2 = os.getenv("key2")
key3 = os.getenv("key3")
key4 = os.getenv("key4")
key5 = os.getenv("key5")
key6 = os.getenv("key6")
key7 = os.getenv("key7")
key8 = os.getenv("key8")
key9 = os.getenv("key9")
key10 = os.getenv("key10")
key11 = os.getenv("key11")
key12 = os.getenv("key12")
key13 = os.getenv("key13")
key14 = os.getenv("key14")
key15 = os.getenv("key15")
key16 = os.getenv("key16")
key17 = os.getenv("key17")
key18 = os.getenv("key18")
key19 = os.getenv("key19")
key20 = os.getenv("key20")
key21 = os.getenv("key21")
key22 = os.getenv("key22")
key23 = os.getenv("key23")
key24 = os.getenv("key24")
key25 = os.getenv("key25")
key26 = os.getenv("key26")
key27 = os.getenv("key27")
key28 = os.getenv("key28")
pkey="-----BEGIN PRIVATE KEY-----\n"+key2+"\n"+key3+"\n"+ key4+"\n"+key5+"\n"+ key6+"\n"+key7+"\n"+key8+"\n"+key9+"\n"+key10+"\n"+key11+"\n"+key12+"\n"+key13+"\n"+key14+"\n"+key15+"\n"+key16+"\n"+key17+"\n"+key18+"\n"+key19+"\n"+key20+"\n"+key21+"\n"+key22+"\n"+key24+"\n"+key25+"\n"+key26+"\n"+key27+"\n"+key28+"\n-----END PRIVATE KEY-----\n"
json_data={
"type": "service_account",
"project_id": "nestolechatbot",
"private_key_id": key1,
"private_key": pkey,
"client_email": "nestoleservice@nestolechatbot.iam.gserviceaccount.com",
"client_email": "nestoleservice@nestolechatbot.iam.gserviceaccount.com",
"client_id": "107457262210035412036",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/nestoleservice%40nestolechatbot.iam.gserviceaccount.com",
"universe_domain": "googleapis.com"
}
creds = service_account.Credentials.from_service_account_info(json_data, scopes=scope)
client = gspread.authorize(creds)
sheet = client.open("nestolechatbot").sheet1 # Open the sheet
def save_to_sheet(date, name, message):
# Write user input to the Google Sheet
sheet.append_row([date, name, message])
return f"Thanks {name}, your message has been saved!"
path='/Users/thiloid/Desktop/LSKI/ole_nest/Chatbot/LLM/chromaTS'
if not os.path.exists(path):
path = "/home/user/app/chromaTS"
print(path)
client = chromadb.PersistentClient(path=path)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
collection = client.get_collection(name="chromaTS", embedding_function=sentence_transformer_ef)
inference_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Global variable to store the URL
global_url = ""
def format_prompt(message, history):
print("HISTORY")
print(history)
prompt = ""
if history:
user_prompt, bot_response = history[-1]
prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
print("Final P")
print(prompt)
return prompt
def response(prompt, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0):
global global_url
print(f"Working with URL: {global_url}") # You can use the URL here
temperature = float(temperature)
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
search_prompt = format_prompt(prompt, history)
results = collection.query(
query_texts=[search_prompt],
n_results=60,
)
dists = ["<br><small>(relevance: " + str(round((1-d)*100)/100) + ";" for d in results['distances'][0]]
results = results['documents'][0]
combination = zip(results, dists)
combination = [' '.join(triplets) for triplets in combination]
if len(results) > 1:
addon = "Bitte berücksichtige bei deiner Antwort ausschießlich folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n" + "\n".join(results)
system = "Du bist ein deutschsprachiges KI-basiertes Studienberater Assistenzsystem, das zu jedem Anliegen möglichst geeignete Studieninformationen empfiehlt." + addon + "\n\nUser-Anliegen:"
formatted_prompt = format_prompt(system + "\n" + prompt, history)
stream = inference_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
now = str(datetime.now())
save_to_sheet(now, prompt, output)
yield output
def js_code():
return """
<script>
function getUrl() {
const url = window.location.href;
const xhr = new XMLHttpRequest();
xhr.open("POST", "/submit_url", true);
xhr.setRequestHeader("Content-Type", "application/json");
xhr.onreadystatechange = function() {
if (xhr.readyState === 4 && xhr.status === 200) {
console.log("URL submitted successfully");
}
};
xhr.send(JSON.stringify({ url: url }));
}
window.onload = getUrl;
</script>
"""
def submit_url(url: str):
global global_url
global_url = url # Save the URL in the global variable
print(f"Received URL: {url}")
return url
chatbot = gr.ChatInterface(
response,
chatbot=gr.Chatbot(value=[[None, "Herzlich willkommen! Ich bin Chätti ein KI-basiertes Studienassistenzsystem, das für jede Anfrage die am besten Studieninformationen empfiehlt.<br>Erzähle mir, was du gerne tust!"]], render_markdown=True),
title="German Studyhelper Chätti"
)
# Add a route to handle the URL submission
chatbot.launch(share=True, js=js_code())
@gr.routes.post("/submit_url")
async def process_url(request):
data = await request.json()
url = data.get("url", "")
submit_url(url)
return {"status": "success"}
print("Interface up and running!")
|