TheFrenchDemos commited on
Commit
cedfc32
·
1 Parent(s): ff9ba81

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -17
app.py CHANGED
@@ -80,20 +80,25 @@ def distance_to_similarity(distances, temp=1e-4):
80
  distances[ii] = np.exp(contribs) / sum_contribs
81
  return distances
82
 
 
 
83
  def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
84
  """Calculate rewards based on user inputs and similarities"""
85
  num_users = num_users_k * 1000
86
-
87
- # Extraire les features
88
- image1 = Image.open("static/1.webp")
89
- image2 = Image.open("static/2.webp")
90
- features1 = get_ft(model, image1)
91
- features2 = get_ft(model, image2)
92
-
93
- # Calculer la distance euclidienne
94
- euclid = np.linalg.norm(features1 - features2)
95
-
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  # Monthly revenue allocated to authors
98
  authors_monthly_revenue = subscription * num_users * (author_share / 100)
99
 
@@ -118,16 +123,10 @@ def calculate_rewards(subscription, num_generations, author_share, ro_share, num
118
  'author_month_reward': f"{author_month_reward:.0f}€",
119
  'ro_month_reward': f"{ro_month_reward:.0f}€",
120
  'raw_similarity': euclid
121
- # 'paid_per_month': f"{subscription:.0f}€",
122
- # 'paid_per_gen': f"{paid_per_gen:.2f}€",
123
- # 'aro_share': f"{aro_share:.2f}c€",
124
- # 'attribution': f"{sim*100:.0f}%",
125
- # 'training_data_reward': f"{training_data_reward:.2f}c€",
126
- # 'author_month_reward': f"{author_month_reward:.0f}€",
127
- # 'ro_month_reward': f"{ro_month_reward:.0f}€"
128
  })
129
  return rewards
130
 
 
131
  # Global variables for model and index
132
  model = None
133
  index = None
 
80
  distances[ii] = np.exp(contribs) / sum_contribs
81
  return distances
82
 
83
+ import os
84
+
85
  def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
86
  """Calculate rewards based on user inputs and similarities"""
87
  num_users = num_users_k * 1000
 
 
 
 
 
 
 
 
 
 
88
 
89
+ try:
90
+ if os.path.exists("static/1.webp") and os.path.exists("static/2.webp"):
91
+ image1 = Image.open("static/1.webp")
92
+ image2 = Image.open("static/2.webp")
93
+ features1 = get_ft(model, image1)
94
+ features2 = get_ft(model, image2)
95
+ euclid = np.linalg.norm(features1 - features2)
96
+ else:
97
+ euclid = 0 # pas d'image, euclidienne à 0
98
+ except Exception as e:
99
+ print(f"Erreur lors du chargement des images : {e}")
100
+ euclid = 0 # sécurité
101
+
102
  # Monthly revenue allocated to authors
103
  authors_monthly_revenue = subscription * num_users * (author_share / 100)
104
 
 
123
  'author_month_reward': f"{author_month_reward:.0f}€",
124
  'ro_month_reward': f"{ro_month_reward:.0f}€",
125
  'raw_similarity': euclid
 
 
 
 
 
 
 
126
  })
127
  return rewards
128
 
129
+
130
  # Global variables for model and index
131
  model = None
132
  index = None