Spaces:
Sleeping
Sleeping
Commit
·
bd0320b
1
Parent(s):
80a1838
Update app.py
Browse files
app.py
CHANGED
@@ -1,234 +1,58 @@
|
|
1 |
# docker build -t reward-simulator .docker run -p 7860:7860 -v $(pwd)/data:/app/data reward-simulator
|
2 |
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
import io
|
6 |
-
import faiss
|
7 |
-
|
8 |
-
import requests
|
9 |
import torch
|
10 |
|
11 |
-
from request import get_ft,
|
12 |
-
### from flickrapi import FlickrAPI
|
13 |
|
14 |
-
from flask import Flask, request, render_template, jsonify, send_from_directory
|
15 |
app = Flask(__name__)
|
16 |
|
17 |
-
|
18 |
-
1: "static/1.webp",
|
19 |
-
2: "static/2.webp",
|
20 |
-
3: "static/3.webp"
|
21 |
-
}
|
22 |
-
|
23 |
-
# Add Flickr configuration
|
24 |
-
### FLICKR_API_KEY = '80ef21a6f7eb0984ea613c316a89ca69'
|
25 |
-
### FLICKR_API_SECRET = '4d0e8ce6734f4b3f'
|
26 |
-
### flickr = FlickrAPI(FLICKR_API_KEY, FLICKR_API_SECRET, format='parsed-json', store_token=False)
|
27 |
-
|
28 |
-
### def get_photo_id(url):
|
29 |
-
### """Extract photo ID from Flickr URL"""
|
30 |
-
### try:
|
31 |
-
### return url.split('/')[-1].split('_')[0]
|
32 |
-
### except:
|
33 |
-
### return None
|
34 |
-
|
35 |
-
### def get_other_info(url):
|
36 |
-
### """Get author information from Flickr"""
|
37 |
-
### try:
|
38 |
-
### photo_id = get_photo_id(url)
|
39 |
-
### if photo_id:
|
40 |
-
### photo_info = flickr.photos.getInfo(photo_id=photo_id)
|
41 |
-
### license = photo_info['photo']['license']
|
42 |
-
### owner = photo_info['photo']['owner']
|
43 |
-
### flickr_url = f"https://www.flickr.com/photos/{owner.get('nsid', '')}/{photo_id}"
|
44 |
-
### return {
|
45 |
-
### 'username': owner.get('username', ''),
|
46 |
-
### 'realname': owner.get('realname', ''),
|
47 |
-
### 'nsid': owner.get('nsid', ''),
|
48 |
-
### 'flickr_url': flickr_url,
|
49 |
-
### 'license': license
|
50 |
-
### }
|
51 |
-
### except:
|
52 |
-
### pass
|
53 |
-
### return {
|
54 |
-
### 'username': 'Unknown',
|
55 |
-
### 'realname': 'Unknown',
|
56 |
-
### 'nsid': '',
|
57 |
-
### 'flickr_url': '',
|
58 |
-
### 'license': 'Unknown'
|
59 |
-
### }
|
60 |
-
|
61 |
-
|
62 |
-
### def load_model():
|
63 |
-
### """Load DINOv2 model once and cache it"""
|
64 |
-
### torch.hub.set_dir('static')
|
65 |
-
### model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
|
66 |
-
### model.eval()
|
67 |
-
### model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
68 |
-
### return model
|
69 |
-
|
70 |
-
### def load_index(index_path):
|
71 |
-
### """Load FAISS index once and cache it"""
|
72 |
-
### return faiss.read_index(index_path)
|
73 |
-
|
74 |
-
def distance_to_similarity(distances, temp=1e-4):
|
75 |
-
"""Convert distance to similarity"""
|
76 |
-
for ii in range(len(distances)):
|
77 |
-
contribs = distances[ii].max() - distances[ii]
|
78 |
-
contribs = contribs / temp
|
79 |
-
sum_contribs = np.exp(contribs).sum()
|
80 |
-
distances[ii] = np.exp(contribs) / sum_contribs
|
81 |
-
return distances
|
82 |
-
|
83 |
-
import os
|
84 |
-
|
85 |
-
import os
|
86 |
-
from PIL import Image
|
87 |
-
import numpy as np
|
88 |
-
|
89 |
-
def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
|
90 |
-
"""Calculate raw similarity (distance) between two static images"""
|
91 |
-
|
92 |
-
try:
|
93 |
-
if os.path.exists("static/1.webp") and os.path.exists("static/2.webp"):
|
94 |
-
image1 = Image.open("static/1.webp")
|
95 |
-
image2 = Image.open("static/2.webp")
|
96 |
-
features1 = get_ft(model, image1)
|
97 |
-
features2 = get_ft(model, image1) # temporaire : remettre image2
|
98 |
-
euclid = float(np.linalg.norm(features1 - features2))
|
99 |
-
else:
|
100 |
-
euclid = 0.0
|
101 |
-
except Exception as e:
|
102 |
-
print(f"Erreur lors du chargement des images : {e}")
|
103 |
-
euclid = 0.0
|
104 |
-
|
105 |
-
rewards = [{
|
106 |
-
'raw_similarity': euclid
|
107 |
-
}]
|
108 |
-
return rewards
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
# Global variables for model and index
|
113 |
model = None
|
114 |
-
index = None
|
115 |
-
urls = None
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
@app.route('/')
|
125 |
def home():
|
126 |
-
return render_template('index.html')
|
127 |
|
128 |
@app.route('/static/<path:filename>')
|
129 |
def serve_static(filename):
|
130 |
return send_from_directory('static', filename)
|
131 |
|
132 |
-
DEFAULT_PARAMS = {
|
133 |
-
'subscription': 12,
|
134 |
-
'num_generations': 60,
|
135 |
-
'author_share': 5,
|
136 |
-
'ro_share': 10,
|
137 |
-
'num_users_k': 500,
|
138 |
-
'num_neighbors': 10,
|
139 |
-
'num_authors': 2000
|
140 |
-
}
|
141 |
-
|
142 |
-
@app.route('/select_preset/<int:preset_id>')
|
143 |
-
def select_preset(preset_id):
|
144 |
-
if preset_id not in PRESET_IMAGES:
|
145 |
-
return jsonify({'error': 'Invalid preset ID'}), 400
|
146 |
-
|
147 |
-
try:
|
148 |
-
image_path = PRESET_IMAGES[preset_id]
|
149 |
-
image = Image.open(image_path).convert('RGB')
|
150 |
-
|
151 |
-
# Use default parameters for presets
|
152 |
-
params = DEFAULT_PARAMS.copy()
|
153 |
-
|
154 |
-
# Get features and search
|
155 |
-
features = get_ft(model, image)
|
156 |
-
distances, indices = get_topk(index, features, topk=params['num_neighbors'])
|
157 |
-
|
158 |
-
# Collect valid results first
|
159 |
-
valid_results = []
|
160 |
-
valid_similarities = []
|
161 |
-
for i in range(params['num_neighbors']):
|
162 |
-
image_url = urls[indices[0][i]].strip()
|
163 |
-
try:
|
164 |
-
response = requests.head(image_url)
|
165 |
-
if response.status_code == 200:
|
166 |
-
valid_results.append({
|
167 |
-
'index': i,
|
168 |
-
'url': image_url
|
169 |
-
})
|
170 |
-
valid_similarities.append(distances[0][i])
|
171 |
-
except requests.RequestException:
|
172 |
-
continue
|
173 |
-
|
174 |
-
# Renormalize similarities for valid results
|
175 |
-
if valid_similarities:
|
176 |
-
similarities = distance_to_similarity(np.array([valid_similarities]), temp=1e-5)
|
177 |
-
|
178 |
-
# Calculate rewards with renormalized similarities
|
179 |
-
rewards = calculate_rewards(
|
180 |
-
params['subscription'],
|
181 |
-
params['num_generations'],
|
182 |
-
params['author_share'],
|
183 |
-
params['ro_share'],
|
184 |
-
params['num_users_k'],
|
185 |
-
similarities,
|
186 |
-
params['num_authors']
|
187 |
-
)
|
188 |
-
|
189 |
-
# Build final results
|
190 |
-
results = []
|
191 |
-
### for i, result in enumerate(valid_results):
|
192 |
-
### other_info = get_other_info(result['url'])
|
193 |
-
### results.append({
|
194 |
-
### 'image_url': result['url'],
|
195 |
-
### 'rewards': rewards[i],
|
196 |
-
### 'other': other_info
|
197 |
-
### })
|
198 |
-
|
199 |
-
return jsonify({'results': results})
|
200 |
-
|
201 |
-
except Exception as e:
|
202 |
-
return jsonify({'error': str(e)}), 500
|
203 |
-
|
204 |
@app.route('/process', methods=['POST'])
|
205 |
def process_images():
|
206 |
if 'image1' not in request.files or 'image2' not in request.files:
|
207 |
return jsonify({'error': 'Two images must be provided (image1 and image2)'}), 400
|
208 |
|
209 |
try:
|
210 |
-
|
211 |
-
|
212 |
-
image1 = Image.open(io.BytesIO(image_file1.read())).convert('RGB')
|
213 |
|
214 |
-
image_file2 = request.files['image2']
|
215 |
-
image2 = Image.open(io.BytesIO(image_file2.read())).convert('RGB')
|
216 |
-
|
217 |
-
# Extraire les features des deux images
|
218 |
features1 = get_ft(model, image1)
|
219 |
features2 = get_ft(model, image2)
|
220 |
|
221 |
-
|
222 |
-
distance = float(np.linalg.norm(features1 - features2)) # Convertir en float Python natif pour JSON
|
223 |
-
|
224 |
-
# Retourner la distance
|
225 |
return jsonify({'distance': distance})
|
226 |
|
227 |
except Exception as e:
|
|
|
228 |
return jsonify({'error': str(e)}), 500
|
229 |
|
230 |
-
|
231 |
if __name__ == '__main__':
|
232 |
-
|
233 |
app.run(host='0.0.0.0', port=7860)
|
234 |
|
|
|
1 |
# docker build -t reward-simulator .docker run -p 7860:7860 -v $(pwd)/data:/app/data reward-simulator
|
2 |
|
3 |
+
from flask import Flask, request, jsonify, render_template, send_from_directory
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import io
|
|
|
|
|
|
|
7 |
import torch
|
8 |
|
9 |
+
from request import get_ft # get_ft(model, image) doit retourner un np.ndarray
|
|
|
10 |
|
|
|
11 |
app = Flask(__name__)
|
12 |
|
13 |
+
# Global model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
model = None
|
|
|
|
|
15 |
|
16 |
+
def load_model():
|
17 |
+
"""Load DINOv2 model"""
|
18 |
+
torch.hub.set_dir('static') # Cache local des modèles
|
19 |
+
model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
|
20 |
+
model.eval()
|
21 |
+
model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
22 |
+
return model
|
23 |
+
|
24 |
+
def init_model():
|
25 |
+
global model
|
26 |
+
model = load_model()
|
27 |
|
28 |
@app.route('/')
|
29 |
def home():
|
30 |
+
return render_template('index.html') # Si tu as un front-end intégré
|
31 |
|
32 |
@app.route('/static/<path:filename>')
|
33 |
def serve_static(filename):
|
34 |
return send_from_directory('static', filename)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
@app.route('/process', methods=['POST'])
|
37 |
def process_images():
|
38 |
if 'image1' not in request.files or 'image2' not in request.files:
|
39 |
return jsonify({'error': 'Two images must be provided (image1 and image2)'}), 400
|
40 |
|
41 |
try:
|
42 |
+
image1 = Image.open(io.BytesIO(request.files['image1'].read())).convert('RGB')
|
43 |
+
image2 = Image.open(io.BytesIO(request.files['image2'].read())).convert('RGB')
|
|
|
44 |
|
|
|
|
|
|
|
|
|
45 |
features1 = get_ft(model, image1)
|
46 |
features2 = get_ft(model, image2)
|
47 |
|
48 |
+
distance = float(np.linalg.norm(features1 - features2))
|
|
|
|
|
|
|
49 |
return jsonify({'distance': distance})
|
50 |
|
51 |
except Exception as e:
|
52 |
+
print(f"Erreur back-end: {e}")
|
53 |
return jsonify({'error': str(e)}), 500
|
54 |
|
|
|
55 |
if __name__ == '__main__':
|
56 |
+
init_model()
|
57 |
app.run(host='0.0.0.0', port=7860)
|
58 |
|