TheFrenchDemos commited on
Commit
84aa20e
·
1 Parent(s): 1610379

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -18
app.py CHANGED
@@ -74,14 +74,14 @@ def load_index(index_path):
74
  """Load FAISS index once and cache it"""
75
  return faiss.read_index(index_path)
76
 
77
- def distance_to_similarity(distance, temp=1e-4):
78
  """Convert distance to similarity"""
79
- for ii in range(len(distance)):
80
- contribs = distance[ii].max() - distance[ii]
81
  contribs = contribs / temp
82
  sum_contribs = np.exp(contribs).sum()
83
- distance[ii] = np.exp(contribs) / sum_contribs
84
- return distance
85
 
86
  def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
87
  """Calculate rewards based on user inputs and similarities"""
@@ -99,12 +99,6 @@ def calculate_rewards(subscription, num_generations, author_share, ro_share, num
99
  author_month_reward = (authors_monthly_revenue / num_authors) * attribution_bonus
100
  ro_month_reward = author_month_reward / (author_share / 100) * (ro_share / 100)
101
 
102
- try:
103
- sim_value = float(sim.item()) if hasattr(sim, "item") else float(sim)
104
- except Exception as e:
105
- print("Erreur de conversion de sim:", e)
106
- sim_value = 0.0 # valeur par défaut en cas d'erreur
107
-
108
  rewards.append({
109
  'paid_per_month': f"{subscription:.0f}€",
110
  'attribution': f"{sim * 100:.0f}%",
@@ -179,15 +173,13 @@ def select_preset(preset_id):
179
  #image2 = load_image(PRESET_IMAGES[2])
180
 
181
  # Extraire les features
182
- image1 = Image.open("static/1.webp")
183
- image2 = Image.open("static/2.webp")
184
- features1 = get_ft(model, image1)
185
- features2 = get_ft(model, image2)
186
 
187
  # Calculer la distance euclidienne
188
- distances = np.linalg.norm(features1 - features2)
189
-
190
- #print(f"Distance euclidienne entre l'image 1 et l'image 2 : {distances}")
191
 
192
  # Collect valid results first
193
  valid_results = []
 
74
  """Load FAISS index once and cache it"""
75
  return faiss.read_index(index_path)
76
 
77
+ def distance_to_similarity(distances, temp=1e-4):
78
  """Convert distance to similarity"""
79
+ for ii in range(len(distances)):
80
+ contribs = distances[ii].max() - distances[ii]
81
  contribs = contribs / temp
82
  sum_contribs = np.exp(contribs).sum()
83
+ distances[ii] = np.exp(contribs) / sum_contribs
84
+ return distances
85
 
86
  def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
87
  """Calculate rewards based on user inputs and similarities"""
 
99
  author_month_reward = (authors_monthly_revenue / num_authors) * attribution_bonus
100
  ro_month_reward = author_month_reward / (author_share / 100) * (ro_share / 100)
101
 
 
 
 
 
 
 
102
  rewards.append({
103
  'paid_per_month': f"{subscription:.0f}€",
104
  'attribution': f"{sim * 100:.0f}%",
 
173
  #image2 = load_image(PRESET_IMAGES[2])
174
 
175
  # Extraire les features
176
+ #image1 = Image.open("static/1.webp")
177
+ #image2 = Image.open("static/2.webp")
178
+ #features1 = get_ft(model, image1)
179
+ #features2 = get_ft(model, image2)
180
 
181
  # Calculer la distance euclidienne
182
+ #distances = np.linalg.norm(features1 - features2)
 
 
183
 
184
  # Collect valid results first
185
  valid_results = []