FraudScore / app.py
TheFrenchDemos's picture
Update app.py
e8c243a verified
# docker build -t reward-simulator .docker run -p 7860:7860 -v $(pwd)/data:/app/data reward-simulator
from flask import Flask, request, jsonify, render_template, send_from_directory
from PIL import Image
import numpy as np
import io
import torch
from request import get_ft # get_ft(model, image) doit retourner un np.ndarray
app = Flask(__name__)
# Global model
model = None
def load_model():
"""Load DINOv2 model"""
torch.hub.set_dir("/tmp/torch_cache") # Dossier temporaire autorisé
model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
model.eval()
model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
return model
def init_model():
global model
model = load_model()
@app.route('/')
def home():
return render_template('index.html') # Si tu as un front-end intégré
@app.route('/static/<path:filename>')
def serve_static(filename):
return send_from_directory('static', filename)
@app.route('/process', methods=['POST'])
def process_images():
if 'image1' not in request.files or 'image2' not in request.files:
return jsonify({'error': 'Two images must be provided (image1 and image2)'}), 400
try:
image1 = Image.open(io.BytesIO(request.files['image1'].read())).convert('RGB')
image2 = Image.open(io.BytesIO(request.files['image2'].read())).convert('RGB')
features1 = get_ft(model, image1)
features2 = get_ft(model, image2)
distance = float(np.linalg.norm(features1 - features2))
return jsonify({'distance': distance})
except Exception as e:
print(f"Erreur back-end: {e}")
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
init_model()
app.run(host='0.0.0.0', port=7860)