File size: 11,754 Bytes
58a226a
 
 
 
77e13dc
 
58a226a
77e13dc
 
58a226a
9bf9553
58a226a
 
 
8c9f732
 
 
 
58a226a
77e13dc
58a226a
 
 
 
 
 
 
 
 
 
 
77e13dc
58a226a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b556cc9
58a226a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b556cc9
 
 
 
 
58a226a
 
 
 
 
 
 
 
 
bfe265d
 
 
 
 
 
 
34d6165
bfe265d
 
58a226a
 
9bf9553
58a226a
 
 
b556cc9
58a226a
 
 
bfe265d
58a226a
 
b556cc9
58a226a
b556cc9
 
 
 
58a226a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe265d
 
58a226a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77e13dc
 
58a226a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77e13dc
 
58a226a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe265d
 
58a226a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# docker build -t reward-simulator .docker run -p 7860:7860 -v $(pwd)/data:/app/data reward-simulator

from PIL import Image
import numpy as np
import io                             #manipule des images téléchargées via une URL ou une API
import faiss                          #librairie pour la recherche de similarité dans des vecteurs

import requests                       #télécharge des images et récupére une image depuis une URL
import torch                          #modèles de machine learning pour extraire les features d’images (vecteurs)

from request import get_ft, get_topk  #get_ft extrait les vecteurs, get_topk trouve les k plus proches voisins
from flickrapi import FlickrAPI

from flask import Flask, request, render_template, jsonify, send_from_directory
                                      #Flask est un micro-framework Python pour créer des applications web
                                      #rend un fichier HTML (template) en y injectant des variables.
app = Flask(__name__)                 #crée l'objet de l'application web


PRESET_IMAGES = {                     #les images présélectionnées sont rangées sous /static
    1: "static/1.webp",
    2: "static/2.webp",
    3: "static/3.webp"
}

# Add Flickr configuration
FLICKR_API_KEY = '80ef21a6f7eb0984ea613c316a89ca69'
FLICKR_API_SECRET = '4d0e8ce6734f4b3f'
flickr = FlickrAPI(FLICKR_API_KEY, FLICKR_API_SECRET, format='parsed-json', store_token=False)

def get_photo_id(url):
    """Extract photo ID from Flickr URL"""           #ex. get_photo_id(https://exemple.com/images/photo_chat_001.jpg)= photo
    try:
        return url.split('/')[-1].split('_')[0]
    except:
        return None

def get_other_info(url):
    """Get author information from Flickr"""
    try:
        photo_id = get_photo_id(url)
        if photo_id:
            photo_info = flickr.photos.getInfo(photo_id=photo_id)
            license = photo_info['photo']['license']
            owner = photo_info['photo']['owner']
            flickr_url = f"https://www.flickr.com/photos/{owner.get('nsid', '')}/{photo_id}"
            return {
                'username': owner.get('username', ''),
                'realname': owner.get('realname', ''),
                'nsid': owner.get('nsid', ''),
                'flickr_url': flickr_url,
                'license': license
            }
    except:
        pass
    return {
        'username': 'Unknown',
        'realname': 'Unknown',
        'nsid': '',
        'flickr_url': '',
        'license': 'Unknown'
    }


def load_model():
    """Load DINOv2 model once and cache it"""
    torch.hub.set_dir('static')
    model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
    model.eval()
    model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
    return model

def load_index(index_path):
    """Load FAISS index once and cache it"""
    return faiss.read_index(index_path)

def distance_to_similarity(distances, temp=1e-4):
    """Convert distance to similarity"""
    for ii in range(len(distances)):
        contribs = distances[ii].max() - distances[ii]
        contribs = contribs / temp
        sum_contribs = np.exp(contribs).sum()
        distances[ii] = np.exp(contribs) / sum_contribs
    return distances

def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
    """Calculate rewards based on user inputs and similarities"""
    num_users = num_users_k * 1000
    
    # Monthly revenue allocated to authors
    authors_monthly_revenue = subscription * num_users * (author_share / 100)
    
    rewards = []
    for sim in similarities[0]:
        # Attribution bonus based on similarity score (sim) and number of neighbors (len)
        attribution_bonus = sim * len(similarities[0])
        
        # Calculate monthly rewards
        author_month_reward = (authors_monthly_revenue / num_authors) * attribution_bonus
        ro_month_reward = author_month_reward / (author_share / 100) * (ro_share / 100)
        
        rewards.append({
            'paid_per_month': f"{subscription:.0f}€",
            'attribution': f"{sim*100:.0f}%",
            'author_month_reward': f"{author_month_reward:.0f}€",
            'ro_month_reward': f"{ro_month_reward:.0f}€"
            # 'paid_per_month': f"{subscription:.0f}€",
            # 'paid_per_gen': f"{paid_per_gen:.2f}€",
            # 'aro_share': f"{aro_share:.2f}c€",
            # 'attribution': f"{sim*100:.0f}%",
            # 'training_data_reward': f"{training_data_reward:.2f}c€",
            # 'author_month_reward': f"{author_month_reward:.0f}€",
            # 'ro_month_reward': f"{ro_month_reward:.0f}€"
        })
    return rewards

# Global variables for model and index
model = None
index = None
urls = None

def init_model():
    global model, index, urls                       #variables du script, et non de la seule fonction
    model = load_model()                            #model charge DinoV2
    index = load_index("data/openimages_index.bin") #index charge l'index binaire des vecteurs
    with open("data/openimages_urls.txt", "r") as f:#ouvre le fichier texte des URLs
        urls = f.readlines()                        #lit toutes les URLs

@app.route('/')
def home():
    return render_template('index.html')

@app.route('/static/<path:filename>')
def serve_static(filename):
    return send_from_directory('static', filename)

DEFAULT_PARAMS = {
    'subscription': 12,
    'num_generations': 60,
    'author_share': 5,
    'ro_share': 10,
    'num_users_k': 500,
    'num_neighbors': 10,
    'num_authors': 2000
}

@app.route('/select_preset/<int:preset_id>')
def select_preset(preset_id):
    if preset_id not in PRESET_IMAGES:        #vérifie l'existence de preset_id dans le dictionnaire
        return jsonify({'error': 'Invalid preset ID'}), 400
    
    try:
        image_path = PRESET_IMAGES[preset_id] #récupère le chemin du fichier image
        image = Image.open(image_path).convert('RGB')
        
        # Use default parameters for presets
        params = DEFAULT_PARAMS.copy()
        
        # Get features and search
        features = get_ft(model, image)        #extrait les features, soit le vecteur représentant l’image
        distances, indices = get_topk(index, features, topk=params['num_neighbors'])
                                               #utilise l’index pour trouver les k voisins de l’image
                                               #retourne 
                                               # - distances avec les voisins
                                               # - indices : les positions (dans l'index) des voisins
        
        # Collect valid results first
        valid_results = []
        valid_similarities = []
        for i in range(params['num_neighbors']):
            image_url = urls[indices[0][i]].strip()
            try:
                response = requests.head(image_url)
                if response.status_code == 200:
                    valid_results.append({
                        'index': i,
                        'url': image_url
                    })
                    valid_similarities.append(distances[0][i])
            except requests.RequestException:
                continue
        
        # Renormalize similarities for valid results
        if valid_similarities:
            similarities = distance_to_similarity(np.array([valid_similarities]), temp=1e-5)
            
            # Calculate rewards with renormalized similarities
            rewards = calculate_rewards(
                params['subscription'],
                params['num_generations'],
                params['author_share'],
                params['ro_share'],
                params['num_users_k'],
                similarities,
                params['num_authors']
            )
            
            # Build final results
            results = []
            for i, result in enumerate(valid_results):
                other_info = get_other_info(result['url'])
                results.append({
                    'image_url': result['url'],
                    'rewards': rewards[i],
                    'other': other_info
                })
            
            return jsonify({'results': results})
        
    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/process', methods=['POST'])
def process_image():
    if 'image' not in request.files:
        return jsonify({'error': 'No image provided'}), 400
    
    try:
        image_file = request.files['image']                               #attend un fichier image transmis par l'utilisateur
        image = Image.open(io.BytesIO(image_file.read())).convert('RGB')  #convertit l'image en RGB
        
        # Use default parameters if none provided
        params = DEFAULT_PARAMS.copy()
        if request.form:
            params.update({
                'subscription': float(request.form.get('subscription', params['subscription'])),
                'num_generations': int(request.form.get('num_generations', params['num_generations'])),
                'author_share': float(request.form.get('author_share', params['author_share'])),
                'ro_share': float(request.form.get('ro_share', params['ro_share'])),
                'num_users_k': int(request.form.get('num_users_k', params['num_users_k'])),
                'num_neighbors': int(request.form.get('num_neighbors', params['num_neighbors'])),
                'num_authors': int(request.form.get('num_authors', DEFAULT_PARAMS['num_authors'])),
            })
        
        # Process image
        features = get_ft(model, image)                                                ########   extrait le vecteur de l'image
        distances, indices = get_topk(index, features, topk=params['num_neighbors'])   ########   extrait les distances avec les premiers voisins
        
        # Collect valid results first
        valid_results = []
        valid_similarities = []
        for i in range(params['num_neighbors']):
            image_url = urls[indices[0][i]].strip()
            try:
                response = requests.head(image_url)
                if response.status_code == 200:
                    valid_results.append({
                        'index': i,
                        'url': image_url
                    })
                    valid_similarities.append(distances[0][i])
            except requests.RequestException:
                continue
        
        # Renormalize similarities for valid results
        if valid_similarities:
            similarities = distance_to_similarity(np.array([valid_similarities]), temp=1e-5)
            
            # Calculate rewards with renormalized similarities
            rewards = calculate_rewards(
                params['subscription'],
                params['num_generations'],
                params['author_share'],
                params['ro_share'],
                params['num_users_k'],
                similarities,
                params['num_authors']
            )
            
            # Build final results
            results = []
            for i, result in enumerate(valid_results):
                other_info = get_other_info(result['url'])
                results.append({
                    'image_url': result['url'],
                    'rewards': rewards[i],
                    'other': other_info
                })
            
            return jsonify({'results': results})
        
    except Exception as e:
        return jsonify({'error': str(e)}), 500

if __name__ == '__main__':
    init_model()
    app.run(host='0.0.0.0', port=7860)