Spaces:
Sleeping
Sleeping
File size: 11,754 Bytes
58a226a 77e13dc 58a226a 77e13dc 58a226a 9bf9553 58a226a 8c9f732 58a226a 77e13dc 58a226a 77e13dc 58a226a b556cc9 58a226a b556cc9 58a226a bfe265d 34d6165 bfe265d 58a226a 9bf9553 58a226a b556cc9 58a226a bfe265d 58a226a b556cc9 58a226a b556cc9 58a226a bfe265d 58a226a 77e13dc 58a226a 77e13dc 58a226a bfe265d 58a226a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# docker build -t reward-simulator .docker run -p 7860:7860 -v $(pwd)/data:/app/data reward-simulator
from PIL import Image
import numpy as np
import io #manipule des images téléchargées via une URL ou une API
import faiss #librairie pour la recherche de similarité dans des vecteurs
import requests #télécharge des images et récupére une image depuis une URL
import torch #modèles de machine learning pour extraire les features d’images (vecteurs)
from request import get_ft, get_topk #get_ft extrait les vecteurs, get_topk trouve les k plus proches voisins
from flickrapi import FlickrAPI
from flask import Flask, request, render_template, jsonify, send_from_directory
#Flask est un micro-framework Python pour créer des applications web
#rend un fichier HTML (template) en y injectant des variables.
app = Flask(__name__) #crée l'objet de l'application web
PRESET_IMAGES = { #les images présélectionnées sont rangées sous /static
1: "static/1.webp",
2: "static/2.webp",
3: "static/3.webp"
}
# Add Flickr configuration
FLICKR_API_KEY = '80ef21a6f7eb0984ea613c316a89ca69'
FLICKR_API_SECRET = '4d0e8ce6734f4b3f'
flickr = FlickrAPI(FLICKR_API_KEY, FLICKR_API_SECRET, format='parsed-json', store_token=False)
def get_photo_id(url):
"""Extract photo ID from Flickr URL""" #ex. get_photo_id(https://exemple.com/images/photo_chat_001.jpg)= photo
try:
return url.split('/')[-1].split('_')[0]
except:
return None
def get_other_info(url):
"""Get author information from Flickr"""
try:
photo_id = get_photo_id(url)
if photo_id:
photo_info = flickr.photos.getInfo(photo_id=photo_id)
license = photo_info['photo']['license']
owner = photo_info['photo']['owner']
flickr_url = f"https://www.flickr.com/photos/{owner.get('nsid', '')}/{photo_id}"
return {
'username': owner.get('username', ''),
'realname': owner.get('realname', ''),
'nsid': owner.get('nsid', ''),
'flickr_url': flickr_url,
'license': license
}
except:
pass
return {
'username': 'Unknown',
'realname': 'Unknown',
'nsid': '',
'flickr_url': '',
'license': 'Unknown'
}
def load_model():
"""Load DINOv2 model once and cache it"""
torch.hub.set_dir('static')
model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
model.eval()
model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
return model
def load_index(index_path):
"""Load FAISS index once and cache it"""
return faiss.read_index(index_path)
def distance_to_similarity(distances, temp=1e-4):
"""Convert distance to similarity"""
for ii in range(len(distances)):
contribs = distances[ii].max() - distances[ii]
contribs = contribs / temp
sum_contribs = np.exp(contribs).sum()
distances[ii] = np.exp(contribs) / sum_contribs
return distances
def calculate_rewards(subscription, num_generations, author_share, ro_share, num_users_k, similarities, num_authors=1800):
"""Calculate rewards based on user inputs and similarities"""
num_users = num_users_k * 1000
# Monthly revenue allocated to authors
authors_monthly_revenue = subscription * num_users * (author_share / 100)
rewards = []
for sim in similarities[0]:
# Attribution bonus based on similarity score (sim) and number of neighbors (len)
attribution_bonus = sim * len(similarities[0])
# Calculate monthly rewards
author_month_reward = (authors_monthly_revenue / num_authors) * attribution_bonus
ro_month_reward = author_month_reward / (author_share / 100) * (ro_share / 100)
rewards.append({
'paid_per_month': f"{subscription:.0f}€",
'attribution': f"{sim*100:.0f}%",
'author_month_reward': f"{author_month_reward:.0f}€",
'ro_month_reward': f"{ro_month_reward:.0f}€"
# 'paid_per_month': f"{subscription:.0f}€",
# 'paid_per_gen': f"{paid_per_gen:.2f}€",
# 'aro_share': f"{aro_share:.2f}c€",
# 'attribution': f"{sim*100:.0f}%",
# 'training_data_reward': f"{training_data_reward:.2f}c€",
# 'author_month_reward': f"{author_month_reward:.0f}€",
# 'ro_month_reward': f"{ro_month_reward:.0f}€"
})
return rewards
# Global variables for model and index
model = None
index = None
urls = None
def init_model():
global model, index, urls #variables du script, et non de la seule fonction
model = load_model() #model charge DinoV2
index = load_index("data/openimages_index.bin") #index charge l'index binaire des vecteurs
with open("data/openimages_urls.txt", "r") as f:#ouvre le fichier texte des URLs
urls = f.readlines() #lit toutes les URLs
@app.route('/')
def home():
return render_template('index.html')
@app.route('/static/<path:filename>')
def serve_static(filename):
return send_from_directory('static', filename)
DEFAULT_PARAMS = {
'subscription': 12,
'num_generations': 60,
'author_share': 5,
'ro_share': 10,
'num_users_k': 500,
'num_neighbors': 10,
'num_authors': 2000
}
@app.route('/select_preset/<int:preset_id>')
def select_preset(preset_id):
if preset_id not in PRESET_IMAGES: #vérifie l'existence de preset_id dans le dictionnaire
return jsonify({'error': 'Invalid preset ID'}), 400
try:
image_path = PRESET_IMAGES[preset_id] #récupère le chemin du fichier image
image = Image.open(image_path).convert('RGB')
# Use default parameters for presets
params = DEFAULT_PARAMS.copy()
# Get features and search
features = get_ft(model, image) #extrait les features, soit le vecteur représentant l’image
distances, indices = get_topk(index, features, topk=params['num_neighbors'])
#utilise l’index pour trouver les k voisins de l’image
#retourne
# - distances avec les voisins
# - indices : les positions (dans l'index) des voisins
# Collect valid results first
valid_results = []
valid_similarities = []
for i in range(params['num_neighbors']):
image_url = urls[indices[0][i]].strip()
try:
response = requests.head(image_url)
if response.status_code == 200:
valid_results.append({
'index': i,
'url': image_url
})
valid_similarities.append(distances[0][i])
except requests.RequestException:
continue
# Renormalize similarities for valid results
if valid_similarities:
similarities = distance_to_similarity(np.array([valid_similarities]), temp=1e-5)
# Calculate rewards with renormalized similarities
rewards = calculate_rewards(
params['subscription'],
params['num_generations'],
params['author_share'],
params['ro_share'],
params['num_users_k'],
similarities,
params['num_authors']
)
# Build final results
results = []
for i, result in enumerate(valid_results):
other_info = get_other_info(result['url'])
results.append({
'image_url': result['url'],
'rewards': rewards[i],
'other': other_info
})
return jsonify({'results': results})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/process', methods=['POST'])
def process_image():
if 'image' not in request.files:
return jsonify({'error': 'No image provided'}), 400
try:
image_file = request.files['image'] #attend un fichier image transmis par l'utilisateur
image = Image.open(io.BytesIO(image_file.read())).convert('RGB') #convertit l'image en RGB
# Use default parameters if none provided
params = DEFAULT_PARAMS.copy()
if request.form:
params.update({
'subscription': float(request.form.get('subscription', params['subscription'])),
'num_generations': int(request.form.get('num_generations', params['num_generations'])),
'author_share': float(request.form.get('author_share', params['author_share'])),
'ro_share': float(request.form.get('ro_share', params['ro_share'])),
'num_users_k': int(request.form.get('num_users_k', params['num_users_k'])),
'num_neighbors': int(request.form.get('num_neighbors', params['num_neighbors'])),
'num_authors': int(request.form.get('num_authors', DEFAULT_PARAMS['num_authors'])),
})
# Process image
features = get_ft(model, image) ######## extrait le vecteur de l'image
distances, indices = get_topk(index, features, topk=params['num_neighbors']) ######## extrait les distances avec les premiers voisins
# Collect valid results first
valid_results = []
valid_similarities = []
for i in range(params['num_neighbors']):
image_url = urls[indices[0][i]].strip()
try:
response = requests.head(image_url)
if response.status_code == 200:
valid_results.append({
'index': i,
'url': image_url
})
valid_similarities.append(distances[0][i])
except requests.RequestException:
continue
# Renormalize similarities for valid results
if valid_similarities:
similarities = distance_to_similarity(np.array([valid_similarities]), temp=1e-5)
# Calculate rewards with renormalized similarities
rewards = calculate_rewards(
params['subscription'],
params['num_generations'],
params['author_share'],
params['ro_share'],
params['num_users_k'],
similarities,
params['num_authors']
)
# Build final results
results = []
for i, result in enumerate(valid_results):
other_info = get_other_info(result['url'])
results.append({
'image_url': result['url'],
'rewards': rewards[i],
'other': other_info
})
return jsonify({'results': results})
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
init_model()
app.run(host='0.0.0.0', port=7860)
|