Spaces:
Sleeping
Sleeping
Delete simple_inference.py
Browse files- simple_inference.py +0 -238
simple_inference.py
DELETED
@@ -1,238 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
# -*- coding: utf-8 -*-
|
3 |
-
|
4 |
-
import argparse
|
5 |
-
import json
|
6 |
-
import os
|
7 |
-
import torch
|
8 |
-
import base64
|
9 |
-
from io import BytesIO
|
10 |
-
from PIL import Image
|
11 |
-
|
12 |
-
# 条件导入,根据选择的推理引擎
|
13 |
-
try:
|
14 |
-
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
15 |
-
transformers_available = True
|
16 |
-
except ImportError:
|
17 |
-
transformers_available = False
|
18 |
-
print("警告: transformers相关库未安装,无法使用transformers引擎")
|
19 |
-
|
20 |
-
try:
|
21 |
-
from vllm import LLM, SamplingParams
|
22 |
-
vllm_available = True
|
23 |
-
except ImportError:
|
24 |
-
vllm_available = False
|
25 |
-
print("警告: vllm相关库未安装,无法使用vllm引擎")
|
26 |
-
|
27 |
-
# 合并 qwen_vl_utils 的代码
|
28 |
-
def process_vision_info(messages):
|
29 |
-
"""处理多模态消息中的图像和视频信息
|
30 |
-
|
31 |
-
Args:
|
32 |
-
messages: 包含图像或视频的消息列表
|
33 |
-
|
34 |
-
Returns:
|
35 |
-
images_data: 处理后的图像数据
|
36 |
-
videos_data: 处理后的视频数据
|
37 |
-
"""
|
38 |
-
images_list, videos_list = [], []
|
39 |
-
for message in messages:
|
40 |
-
content = message.get("content", None)
|
41 |
-
if isinstance(content, str):
|
42 |
-
# 纯文本消息,不处理
|
43 |
-
continue
|
44 |
-
elif isinstance(content, list):
|
45 |
-
# 混合消息,可能包含图像或视频
|
46 |
-
for item in content:
|
47 |
-
if not isinstance(item, dict):
|
48 |
-
continue
|
49 |
-
|
50 |
-
# 处理图像
|
51 |
-
if item.get("type") == "image" and "image" in item:
|
52 |
-
image = item["image"]
|
53 |
-
if isinstance(image, str):
|
54 |
-
# 图像URL或路径,尝试加载
|
55 |
-
try:
|
56 |
-
image = Image.open(image)
|
57 |
-
except Exception as e:
|
58 |
-
print(f"图像加载失败: {e}")
|
59 |
-
continue
|
60 |
-
|
61 |
-
# 转换PIL图像为base64编码
|
62 |
-
if isinstance(image, Image.Image):
|
63 |
-
buffered = BytesIO()
|
64 |
-
image.save(buffered, format="PNG")
|
65 |
-
image_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
66 |
-
images_list.append(image_str)
|
67 |
-
|
68 |
-
# 处理视频(如有需要)
|
69 |
-
elif item.get("type") == "video" and "video" in item:
|
70 |
-
# 暂不支持视频
|
71 |
-
pass
|
72 |
-
|
73 |
-
return images_list or None, videos_list or None
|
74 |
-
|
75 |
-
def predict_location(
|
76 |
-
image_path,
|
77 |
-
model_name="Qwen/Qwen2.5-VL-7B-Instruct",
|
78 |
-
inference_engine="transformers"
|
79 |
-
):
|
80 |
-
"""
|
81 |
-
对单个图片进行位置识别预测
|
82 |
-
|
83 |
-
参数:
|
84 |
-
image_path: 图片文件路径
|
85 |
-
model_name: 模型名称或路径
|
86 |
-
inference_engine: 推理引擎,"vllm" 或 "transformers"
|
87 |
-
|
88 |
-
返回:
|
89 |
-
预测结果文本
|
90 |
-
"""
|
91 |
-
# 检查图片是否存在
|
92 |
-
if not os.path.exists(image_path):
|
93 |
-
return f"错误: 图片文件不存在: {image_path}"
|
94 |
-
|
95 |
-
# 加载图片
|
96 |
-
try:
|
97 |
-
image = Image.open(image_path)
|
98 |
-
print(f"成功加载图片: {image_path}")
|
99 |
-
except Exception as e:
|
100 |
-
return f"错误: 无法加载图片: {str(e)}"
|
101 |
-
|
102 |
-
# 加载处理器
|
103 |
-
print(f"加载处理器: {model_name}")
|
104 |
-
processor = AutoProcessor.from_pretrained(model_name, padding_side='left')
|
105 |
-
|
106 |
-
# 构建提示消息 - 简化版本,没有SFT和COT
|
107 |
-
question_text = "In which country and within which first-level administrative region of that country was this picture taken?Please answer in the format of <answer>$country,administrative_area_level_1$</answer>?"
|
108 |
-
system_message = "You are a helpful assistant good at solving problems with step-by-step reasoning. You should first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags."
|
109 |
-
|
110 |
-
# 构建简化后的提示消息
|
111 |
-
prompt_messages = [
|
112 |
-
{
|
113 |
-
"role": "system",
|
114 |
-
"content": [
|
115 |
-
{"type": "text", "text": system_message}
|
116 |
-
]
|
117 |
-
},
|
118 |
-
{
|
119 |
-
"role": "user",
|
120 |
-
"content": [
|
121 |
-
{"type": "image", "image": image},
|
122 |
-
{"type": "text", "text": question_text}
|
123 |
-
]
|
124 |
-
}
|
125 |
-
]
|
126 |
-
|
127 |
-
# 根据选定的引擎进行推理
|
128 |
-
if inference_engine == "vllm":
|
129 |
-
if not vllm_available:
|
130 |
-
return "错误: vLLM库不可用,请安装vllm或选择transformers引擎"
|
131 |
-
|
132 |
-
# 使用vLLM进行推理
|
133 |
-
print(f"使用vLLM加载模型: {model_name}")
|
134 |
-
llm = LLM(
|
135 |
-
model=model_name,
|
136 |
-
limit_mm_per_prompt={"image": 10, "video": 10},
|
137 |
-
dtype="auto",
|
138 |
-
gpu_memory_utilization=0.95,
|
139 |
-
)
|
140 |
-
|
141 |
-
# 设置采样参数
|
142 |
-
sampling_params = SamplingParams(
|
143 |
-
temperature=0.7,
|
144 |
-
top_p=0.8,
|
145 |
-
repetition_penalty=1.05,
|
146 |
-
max_tokens=2048,
|
147 |
-
stop_token_ids=[],
|
148 |
-
)
|
149 |
-
|
150 |
-
# 处理消息为vLLM格式
|
151 |
-
prompt = processor.apply_chat_template(
|
152 |
-
prompt_messages,
|
153 |
-
tokenize=False,
|
154 |
-
add_generation_prompt=True,
|
155 |
-
)
|
156 |
-
|
157 |
-
# 处理图像数据
|
158 |
-
image_inputs, video_inputs = process_vision_info(prompt_messages)
|
159 |
-
|
160 |
-
mm_data = {}
|
161 |
-
if image_inputs is not None:
|
162 |
-
mm_data["image"] = image_inputs
|
163 |
-
|
164 |
-
# 构建vLLM输入
|
165 |
-
llm_input = {
|
166 |
-
"prompt": prompt,
|
167 |
-
"multi_modal_data": mm_data,
|
168 |
-
}
|
169 |
-
|
170 |
-
# 生成回答
|
171 |
-
outputs = llm.generate([llm_input], sampling_params=sampling_params)
|
172 |
-
response = outputs[0].outputs[0].text
|
173 |
-
|
174 |
-
else: # transformers
|
175 |
-
if not transformers_available:
|
176 |
-
return "错误: Transformers相关库不可用,请安装必要的包"
|
177 |
-
|
178 |
-
# 使用transformers加载模型
|
179 |
-
print(f"使用transformers加载模型: {model_name}")
|
180 |
-
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
181 |
-
model_name, torch_dtype="auto", device_map="auto"
|
182 |
-
)
|
183 |
-
|
184 |
-
# 准备输入
|
185 |
-
text = processor.apply_chat_template(
|
186 |
-
prompt_messages, tokenize=False, add_generation_prompt=True
|
187 |
-
)
|
188 |
-
|
189 |
-
# 处理输入
|
190 |
-
inputs = processor(
|
191 |
-
text=text,
|
192 |
-
images=prompt_messages[1]['content'][0]['image'],
|
193 |
-
return_tensors="pt",
|
194 |
-
)
|
195 |
-
|
196 |
-
inputs = inputs.to(model.device)
|
197 |
-
|
198 |
-
# 生成回答
|
199 |
-
with torch.no_grad():
|
200 |
-
generated_ids = model.generate(**inputs, max_new_tokens=2048)
|
201 |
-
|
202 |
-
# 处理输出
|
203 |
-
generated_ids_trimmed = generated_ids[0][len(inputs['input_ids'][0]):]
|
204 |
-
response = processor.decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
205 |
-
|
206 |
-
# 清理GPU缓存
|
207 |
-
if torch.cuda.is_available():
|
208 |
-
torch.cuda.empty_cache()
|
209 |
-
|
210 |
-
print("\n=== 推理结果 ===")
|
211 |
-
print(response)
|
212 |
-
print("=================\n")
|
213 |
-
|
214 |
-
return response
|
215 |
-
|
216 |
-
# if __name__ == "__main__":
|
217 |
-
# # 命令行参数设置
|
218 |
-
# parser = argparse.ArgumentParser(description='对单个图片进行位置识别预测')
|
219 |
-
# parser.add_argument('--image_path', type=str, required=True,
|
220 |
-
# help='图片文件路径')
|
221 |
-
# parser.add_argument('--model_name', type=str, default="Qwen/Qwen2.5-VL-7B-Instruct",
|
222 |
-
# help='模型名称或路径')
|
223 |
-
# parser.add_argument('--inference_engine', type=str, default="transformers", choices=["vllm", "transformers"],
|
224 |
-
# help='推理引擎: vllm 或 transformers')
|
225 |
-
|
226 |
-
# args = parser.parse_args()
|
227 |
-
|
228 |
-
# # 单个图片推理
|
229 |
-
# result = predict_location(
|
230 |
-
# image_path=args.image_path,
|
231 |
-
# model_name=args.model_name,
|
232 |
-
# inference_engine=args.inference_engine
|
233 |
-
# )
|
234 |
-
|
235 |
-
# print(f"最终预测结果: {result}")
|
236 |
-
|
237 |
-
# 使用示例:
|
238 |
-
# python simple_inference.py --image_path /data/phd/tiankaibin/dataset/data/streetview_images_first_tier_cities/testaccio_rome_italy_h45_r100_20250317_183133.jpg --model_name TheEighthDay/SeekWorld_RL_PLUS --inference_engine vllm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|