TheEighthDay commited on
Commit
82a64c8
·
verified ·
1 Parent(s): a16cf43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -58
app.py CHANGED
@@ -1,64 +1,91 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from simple_inference import predict_location
3
+ import os
4
 
5
+ # 设置默认模型和引擎
6
+ DEFAULT_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct"
7
+ DEFAULT_ENGINE = "transformers"
 
8
 
9
+ def process_image(image, model_name, inference_engine):
10
+ """
11
+ 处理上传的图片并返回预测结果
12
+ """
13
+ # 保存上传的图片到临时文件
14
+ temp_path = "temp_image.jpg"
15
+ image.save(temp_path)
16
+
17
+ try:
18
+ # 调用预测函数
19
+ result = predict_location(
20
+ image_path=temp_path,
21
+ model_name=model_name,
22
+ inference_engine=inference_engine
23
+ )
24
+
25
+ # 删除临时文件
26
+ os.remove(temp_path)
27
+
28
+ return result
29
+ except Exception as e:
30
+ # 删除临时文件
31
+ if os.path.exists(temp_path):
32
+ os.remove(temp_path)
33
+ return f"发生错误: {str(e)}"
34
 
35
+ # 创建Gradio界面
36
+ with gr.Blocks(title="位置识别系统") as demo:
37
+ gr.Markdown("# 🏞️ 图片位置识别系统")
38
+ gr.Markdown("上传一张图片,系统将识别图片拍摄的国家和地区。")
39
+
40
+ with gr.Row():
41
+ with gr.Column():
42
+ # 图片上传组件
43
+ image_input = gr.Image(type="pil", label="上传图片")
44
+
45
+ # 模型选择
46
+ model_name = gr.Textbox(
47
+ label="模型名称",
48
+ value=DEFAULT_MODEL,
49
+ info="输入Hugging Face模型ID或本地模型路径"
50
+ )
51
+
52
+ # 推理引擎选择
53
+ inference_engine = gr.Dropdown(
54
+ choices=["transformers", "vllm"],
55
+ value=DEFAULT_ENGINE,
56
+ label="推理引擎"
57
+ )
58
+
59
+ # 提交按钮
60
+ submit_btn = gr.Button("开始识别", variant="primary")
61
+
62
+ with gr.Column():
63
+ # 结果显示
64
+ output = gr.Textbox(
65
+ label="识别结果",
66
+ lines=10,
67
+ placeholder="识别结果将显示在这里..."
68
+ )
69
+
70
+ # 设置提交按钮的回调函数
71
+ submit_btn.click(
72
+ fn=process_image,
73
+ inputs=[image_input, model_name, inference_engine],
74
+ outputs=output
75
+ )
76
+
77
+ # 添加示例
78
+ gr.Examples(
79
+ examples=[
80
+ ["examples/example1.jpg", DEFAULT_MODEL, DEFAULT_ENGINE],
81
+ ["examples/example2.jpg", DEFAULT_MODEL, DEFAULT_ENGINE],
82
+ ],
83
+ inputs=[image_input, model_name, inference_engine],
84
+ outputs=output,
85
+ fn=process_image,
86
+ cache_examples=True,
87
+ )
88
 
89
+ # 启动应用
90
  if __name__ == "__main__":
91
+ demo.launch(share=True)