TheEighthDay commited on
Commit
3a307c7
·
verified ·
1 Parent(s): bf17350

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -50
app.py CHANGED
@@ -1,66 +1,91 @@
1
 
2
-
3
  import gradio as gr
4
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
8
- """
9
- client = InferenceClient("TheEighthDay/SeekWorld_RL_PLUS")
 
 
 
10
 
 
 
 
 
 
 
 
11
 
12
- def respond(
13
- message,
14
- history: list[tuple[str, str]],
15
- system_message,
16
- max_tokens,
17
- temperature,
18
- top_p,
19
- ):
20
- messages = [{"role": "system", "content": system_message}]
 
21
 
22
- for val in history:
23
- if val[0]:
24
- messages.append({"role": "user", "content": val[0]})
25
- if val[1]:
26
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
27
 
28
- messages.append({"role": "user", "content": message})
 
 
29
 
30
- response = ""
 
 
31
 
32
- for message in client.chat_completion(
33
- messages,
34
- max_tokens=max_tokens,
35
- stream=True,
36
- temperature=temperature,
37
- top_p=top_p,
38
- ):
39
- token = message.choices[0].delta.content
40
 
41
- response += token
42
- yield response
43
 
 
 
 
44
 
45
- """
46
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
47
- """
48
  demo = gr.ChatInterface(
49
- respond,
50
- additional_inputs=[
51
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
52
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
53
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
54
- gr.Slider(
55
- minimum=0.1,
56
- maximum=1.0,
57
- value=0.95,
58
- step=0.05,
59
- label="Top-p (nucleus sampling)",
60
- ),
61
- ],
62
  )
63
 
 
64
 
65
- if __name__ == "__main__":
66
- demo.launch()
 
1
 
 
2
  import gradio as gr
3
+ from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
4
+ from transformers.image_utils import load_image
5
+ from threading import Thread
6
+ import time
7
+ import torch
8
+ import spaces
9
+
10
+ MODEL_ID = "TheEighthDay/SeekWorld_RL_PLUS"
11
+ processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
12
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
13
+ MODEL_ID,
14
+ trust_remote_code=True,
15
+ torch_dtype=torch.bfloat16
16
+ ).to("cpu").eval()
17
+
18
+ @spaces.GPU
19
+ def model_inference(input_dict, history):
20
+ text = input_dict["text"]
21
+ files = input_dict["files"]
22
 
23
+ # Load images if provided
24
+ if len(files) > 1:
25
+ images = [load_image(image) for image in files]
26
+ elif len(files) == 1:
27
+ images = [load_image(files[0])]
28
+ else:
29
+ images = []
30
 
31
+ # Validate input
32
+ if text == "" and not images:
33
+ gr.Error("Please input a query and optionally image(s).")
34
+ return
35
+ if text == "" and images:
36
+ gr.Error("Please input a text query along with the image(s).")
37
+ return
38
 
39
+ # Prepare messages for the model
40
+ messages = [
41
+ {
42
+ "role": "user",
43
+ "content": [
44
+ *[{"type": "image", "image": image} for image in images],
45
+ {"type": "text", "text": text},
46
+ ],
47
+ }
48
+ ]
49
 
50
+ # Apply chat template and process inputs
51
+ prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
52
+ inputs = processor(
53
+ text=[prompt],
54
+ images=images if images else None,
55
+ return_tensors="pt",
56
+ padding=True,
57
+ ).to("cpu")
58
 
59
+ # Set up streamer for real-time output
60
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
61
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
62
 
63
+ # Start generation in a separate thread
64
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
65
+ thread.start()
66
 
67
+ # Stream the output
68
+ buffer = ""
69
+ yield "Thinking..."
70
+ for new_text in streamer:
71
+ buffer += new_text
72
+ time.sleep(0.01)
73
+ yield buffer
 
74
 
 
 
75
 
76
+ # Example inputs
77
+ examples = [
78
+ ]
79
 
 
 
 
80
  demo = gr.ChatInterface(
81
+ fn=model_inference,
82
+ description="# **Qwen2.5-VL-3B-Instruct**",
83
+ examples=examples,
84
+ textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
85
+ stop_btn="Stop Generation",
86
+ multimodal=True,
87
+ cache_examples=False,
 
 
 
 
 
 
88
  )
89
 
90
+ demo.launch(debug=True)
91