Spaces:
Sleeping
Sleeping
File size: 7,734 Bytes
086766e b317da6 086766e 7ec5b17 086766e b317da6 b403fe7 b317da6 b403fe7 b317da6 b403fe7 b317da6 7ec5b17 b317da6 086766e b317da6 b403fe7 b317da6 dcd003b b317da6 dcd003b b317da6 dcd003b b317da6 b403fe7 7ec5b17 b317da6 086766e dcd003b b317da6 7ec5b17 b317da6 dcd003b b317da6 1676c6e b317da6 dcd003b b317da6 dcd003b b317da6 dcd003b b317da6 b403fe7 b317da6 b403fe7 b317da6 b403fe7 b317da6 b403fe7 b317da6 dcd003b b403fe7 dcd003b b317da6 dcd003b b317da6 b403fe7 b317da6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
import onnxruntime as ort
import numpy as np
from PIL import Image
import json
from huggingface_hub import hf_hub_download
# Constants
MODEL_REPO = "AngelBottomless/camie-tagger-onnxruntime"
MODEL_FILE = "camie_tagger_initial.onnx"
META_FILE = "metadata.json"
IMAGE_SIZE = (512, 512)
DEFAULT_THRESHOLD = 0.35
# Download model and metadata from Hugging Face Hub
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE, cache_dir=".")
meta_path = hf_hub_download(repo_id=MODEL_REPO, filename=META_FILE, cache_dir=".")
# Initialize ONNX Runtime session and load metadata
session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
with open(meta_path, "r", encoding="utf-8") as f:
metadata = json.load(f)
def escape_tag(tag: str) -> str:
"""Escape underscores and parentheses for Markdown."""
return tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)")
def preprocess_image(pil_image: Image.Image) -> np.ndarray:
"""Convert image to RGB, resize, normalize, and rearrange dimensions."""
img = pil_image.convert("RGB").resize(IMAGE_SIZE)
arr = np.array(img).astype(np.float32) / 255.0
arr = np.transpose(arr, (2, 0, 1))
return np.expand_dims(arr, 0)
def run_inference(pil_image: Image.Image) -> np.ndarray:
"""
Preprocess the image and run the ONNX model inference.
Returns the refined logits as a numpy array.
"""
input_tensor = preprocess_image(pil_image)
input_name = session.get_inputs()[0].name
# Only refined_logits are used (initial_logits is ignored)
_, refined_logits = session.run(None, {input_name: input_tensor})
return refined_logits[0]
def get_tags(refined_logits: np.ndarray, metadata: dict, custom_threshold: float = None):
"""
Compute probabilities from logits and collect tag predictions.
If custom_threshold is provided, it overrides category-specific thresholds.
Returns:
results_by_cat: Dictionary mapping each category to a list of (tag, probability) above its threshold.
prompt_tags_by_cat: Dictionary for prompt-style output with keys: artist, character, general.
all_artist_tags: All artist tags (with probabilities) regardless of threshold.
"""
probs = 1 / (1 + np.exp(-refined_logits))
idx_to_tag = metadata["idx_to_tag"]
tag_to_category = metadata.get("tag_to_category", {})
category_thresholds = metadata.get("category_thresholds", {})
results_by_cat = {}
prompt_tags_by_cat = {"artist": [], "character": [], "general": []}
all_artist_tags = []
for idx, prob in enumerate(probs):
tag = idx_to_tag[str(idx)]
cat = tag_to_category.get(tag, "unknown")
# Use custom threshold if provided; otherwise, use metadata threshold or default.
thresh = custom_threshold if custom_threshold is not None else category_thresholds.get(cat, DEFAULT_THRESHOLD)
if cat == "artist":
all_artist_tags.append((tag, float(prob)))
if float(prob) >= thresh:
results_by_cat.setdefault(cat, []).append((tag, float(prob)))
if cat in prompt_tags_by_cat:
prompt_tags_by_cat[cat].append((tag, float(prob)))
return results_by_cat, prompt_tags_by_cat, all_artist_tags
def format_prompt_tags(prompt_tags_by_cat: dict, all_artist_tags: list) -> str:
"""
Format the tags for prompt-style output.
Returns a comma-separated string of escaped tags.
"""
for cat in prompt_tags_by_cat:
prompt_tags_by_cat[cat].sort(key=lambda x: x[1], reverse=True)
artist_tags = [escape_tag(tag) for tag, _ in prompt_tags_by_cat.get("artist", [])]
character_tags = [escape_tag(tag) for tag, _ in prompt_tags_by_cat.get("character", [])]
general_tags = [escape_tag(tag) for tag, _ in prompt_tags_by_cat.get("general", [])]
prompt_tags = artist_tags + character_tags + general_tags
# Ensure at least one artist tag appears even if none pass the threshold
if not artist_tags and all_artist_tags:
best_artist_tag, _ = max(all_artist_tags, key=lambda item: item[1])
prompt_tags.insert(0, escape_tag(best_artist_tag))
return ", ".join(prompt_tags) if prompt_tags else "No tags predicted."
def format_detailed_output(results_by_cat: dict, all_artist_tags: list) -> str:
"""
Format the tags for detailed output.
Returns a Markdown-formatted string listing tags by category.
"""
if not results_by_cat:
return "No tags predicted for this image."
# Include an artist tag even if below threshold
if "artist" not in results_by_cat and all_artist_tags:
best_artist_tag, best_artist_prob = max(all_artist_tags, key=lambda item: item[1])
results_by_cat["artist"] = [(best_artist_tag, best_artist_prob)]
lines = ["**Predicted Tags by Category:** \n"]
for cat, tag_list in results_by_cat.items():
tag_list.sort(key=lambda x: x[1], reverse=True)
lines.append(f"**Category: {cat}** – {len(tag_list)} tags")
for tag, prob in tag_list:
lines.append(f"- {escape_tag(tag)} (Prob: {prob:.3f})")
lines.append("")
return "\n".join(lines)
def tag_image(pil_image: Image.Image, output_format: str, threshold: float) -> str:
"""
Run inference on the image and return formatted tags based on the chosen output format.
The threshold slider value overrides category-specific thresholds if provided.
"""
if pil_image is None:
return "Please upload an image."
refined_logits = run_inference(pil_image)
results_by_cat, prompt_tags_by_cat, all_artist_tags = get_tags(refined_logits, metadata, custom_threshold=threshold)
if output_format == "Prompt-style Tags":
return format_prompt_tags(prompt_tags_by_cat, all_artist_tags)
else:
return format_detailed_output(results_by_cat, all_artist_tags)
# Build the Gradio Blocks UI
demo = gr.Blocks(theme="gradio/soft")
with demo:
gr.Markdown(
"# 🏷️ Camie Tagger – Anime Image Tagging\n"
"This demo uses an ONNX model of Camie Tagger to label anime illustrations with tags. "
"Upload an image and click **Tag Image** to see predictions."
)
gr.Markdown(
"*(Note: The model will predict a large number of tags across categories like character, general, artist, etc. "
"You can choose a concise prompt-style output or a detailed category-wise breakdown.)*"
)
with gr.Row():
with gr.Column():
image_in = gr.Image(type="pil", label="Input Image")
format_choice = gr.Radio(
choices=["Prompt-style Tags", "Detailed Output"],
value="Prompt-style Tags",
label="Output Format"
)
# Slider to modify the global threshold value
threshold_slider = gr.Slider(
minimum=0,
maximum=1,
step=0.05,
value=DEFAULT_THRESHOLD,
label="Global Threshold"
)
tag_button = gr.Button("🔍 Tag Image")
with gr.Column():
output_box = gr.Markdown("")
tag_button.click(
fn=tag_image,
inputs=[image_in, format_choice, threshold_slider],
outputs=output_box
)
gr.Markdown(
"----\n"
"**Model:** [Camie Tagger ONNX](https://huggingface.co/AngelBottomless/camie-tagger-onnxruntime) • "
"**Base Model:** Camais03/camie-tagger (61% F1 on 70k tags) • **ONNX Runtime:** for efficient CPU inference • "
"*Demo built with Gradio Blocks.*"
)
if __name__ == "__main__":
demo.launch()
|