File size: 6,393 Bytes
a2ac738
 
 
 
13ee6ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ac738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ee6ba
 
 
 
 
 
 
 
 
 
 
a2ac738
 
 
 
 
 
 
 
 
 
 
 
 
 
13ee6ba
 
 
 
a2ac738
 
 
 
 
 
 
 
 
13ee6ba
a2ac738
 
13ee6ba
a2ac738
13ee6ba
 
a2ac738
13ee6ba
 
a2ac738
 
 
 
13ee6ba
 
a2ac738
 
 
 
 
 
 
 
 
 
 
13ee6ba
a2ac738
13ee6ba
 
a2ac738
 
 
 
 
 
 
 
 
 
13ee6ba
 
a2ac738
 
13ee6ba
a2ac738
 
 
 
 
 
 
 
 
 
13ee6ba
a2ac738
 
 
 
 
 
 
 
 
 
 
 
 
 
13ee6ba
 
a2ac738
 
 
 
 
 
 
 
 
 
 
13ee6ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import dotenv
from time import time
import streamlit as st
import logging

# Configure environment for Hugging Face Spaces
os.environ["HF_HOME"] = "/tmp/.cache/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/.cache/huggingface"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/.cache/huggingface"

# Create necessary directories
os.makedirs("/tmp/.cache/huggingface", exist_ok=True)
os.makedirs("/tmp/chroma_persistent_db", exist_ok=True)
os.makedirs("/tmp/source_files", exist_ok=True)

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

from langchain_community.document_loaders.text import TextLoader
from langchain_community.document_loaders import (
    WebBaseLoader, 
    PyPDFLoader, 
    Docx2txtLoader,
)
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain

dotenv.load_dotenv()

os.environ["USER_AGENT"] = "myagent"
DB_DOCS_LIMIT = 10

def clean_temp_files():
    """Clean up temporary files to prevent storage issues"""
    try:
        for folder in ["/tmp/source_files"]:
            for filename in os.listdir(folder):
                file_path = os.path.join(folder, filename)
                if os.path.isfile(file_path):
                    os.unlink(file_path)
    except Exception as e:
        logger.warning(f"Error cleaning temp files: {e}")

def stream_llm_response(llm_stream, messages):
    response_message = ""
    for chunk in llm_stream.stream(messages):
        response_message += chunk.content
        yield chunk
    st.session_state.messages.append({"role": "assistant", "content": response_message})

def load_doc_to_db():
    if "rag_docs" in st.session_state and st.session_state.rag_docs:
        docs = []
        for doc_file in st.session_state.rag_docs:
            if doc_file.name not in st.session_state.rag_sources:
                if len(st.session_state.rag_sources) < DB_DOCS_LIMIT:
                    try:
                        file_path = f"/tmp/source_files/{doc_file.name}"
                        with open(file_path, "wb") as file:
                            file.write(doc_file.getbuffer())
                        
                        if doc_file.type == "application/pdf":
                            loader = PyPDFLoader(file_path)
                        elif doc_file.name.endswith(".docx"):
                            loader = Docx2txtLoader(file_path)
                        elif doc_file.type in ["text/plain", "text/markdown"]:
                            loader = TextLoader(file_path)
                        else:
                            st.warning(f"Unsupported document type: {doc_file.type}")
                            continue
                            
                        docs.extend(loader.load())
                        st.session_state.rag_sources.append(doc_file.name)
                        logger.info(f"Successfully loaded document: {doc_file.name}")
                    except Exception as e:
                        st.toast(f"Error loading document {doc_file.name}: {str(e)}", icon="⚠️")
                        logger.error(f"Error loading document: {e}")
                    finally:
                        if os.path.exists(file_path):
                            os.remove(file_path)
                else:
                    st.error(f"Max documents reached ({DB_DOCS_LIMIT}).")
        if docs:
            _split_and_load_docs(docs)
            st.toast("Documents loaded successfully.", icon="✅")
            clean_temp_files()

def load_url_to_db():
    if "rag_url" in st.session_state and st.session_state.rag_url:
        url = st.session_state.rag_url
        docs = []
        if url not in st.session_state.rag_sources:
            if len(st.session_state.rag_sources) < DB_DOCS_LIMIT:
                try:
                    loader = WebBaseLoader(url)
                    docs.extend(loader.load())
                    st.session_state.rag_sources.append(url)
                    logger.info(f"Successfully loaded URL: {url}")
                except Exception as e:
                    st.error(f"Error loading from URL {url}: {str(e)}")
                    logger.error(f"Error loading URL: {e}")
                if docs:
                    _split_and_load_docs(docs)
                    st.toast(f"Loaded content from URL: {url}", icon="✅")
            else:
                st.error(f"Max documents reached ({DB_DOCS_LIMIT}).")

def initialize_vector_db(docs):
    embedding = HuggingFaceEmbeddings(
        model_name="BAAI/bge-large-en-v1.5",
        model_kwargs={'device': 'cpu'},
        encode_kwargs={'normalize_embeddings': False},
        cache_folder="/tmp/.cache"
    )

    persist_dir = "/tmp/chroma_persistent_db"
    collection_name = "persistent_collection"

    vector_db = Chroma.from_documents(
        documents=docs,
        embedding=embedding,
        persist_directory=persist_dir,
        collection_name=collection_name
    )

    vector_db.persist()
    logger.info("Vector database initialized and persisted")
    return vector_db

def _split_and_load_docs(docs):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
    )

    chunks = text_splitter.split_documents(docs)

    if "vector_db" not in st.session_state:
        st.session_state.vector_db = initialize_vector_db(chunks)
    else:
        st.session_state.vector_db.add_documents(chunks)
        st.session_state.vector_db.persist()
        logger.info("Added new documents to existing vector database")

def _get_context_retriever_chain(vector_db, llm):
    retriever = vector_db.as_retriever()
    prompt = ChatPromptTemplate.from_messages([
        MessagesPlaceholder(variable_name="messages"),
        ("user", "{input}"),
        ("user", "Given the above conversation, generate a search query to find relevant information.")
    ])
    return create_history_aware_retriever(llm, retriever, prompt)

def get_conversational_rag_chain(llm):
    retriever_chain = _get_context_retriever_chain