File size: 7,586 Bytes
0bd7570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ac738
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import streamlit as st
import os
import dotenv
import uuid
import logging

# Configure environment for Hugging Face Spaces
os.environ["HF_HOME"] = "/tmp/.cache/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/.cache/huggingface"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/.cache/huggingface"

# Create necessary directories
os.makedirs("/tmp/.cache/huggingface", exist_ok=True)
os.makedirs("/tmp/chroma_persistent_db", exist_ok=True)
os.makedirs("/tmp/source_files", exist_ok=True)

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

from langchain.schema import HumanMessage, AIMessage
from langchain_groq import ChatGroq
from rag_methods import (
    load_doc_to_db,
    load_url_to_db,
    stream_llm_response,
    stream_llm_rag_response,
)

dotenv.load_dotenv()

# --- Custom CSS Styling ---
def apply_custom_css():
    st.markdown("""
    <style>
    .main .block-container {
        padding-top: 2rem;
        padding-bottom: 2rem;
    }
    h1, h2, h3, h4 {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        font-weight: 600;
    }
    .app-title {
        text-align: center;
        color: #4361ee;
        font-size: 2.2rem;
        font-weight: 700;
        margin-bottom: 1.5rem;
        padding: 1rem;
        border-radius: 10px;
        background: linear-gradient(90deg, rgba(67, 97, 238, 0.1), rgba(58, 12, 163, 0.1));
        text-shadow: 0px 0px 2px rgba(0,0,0,0.1);
    }
    .chat-container {
        border-radius: 10px;
        padding: 10px;
        margin-bottom: 1rem;
    }
    .message-container {
        padding: 0.8rem;
        margin-bottom: 0.8rem;
        border-radius: 8px;
    }
    .user-message {
        background-color: rgba(67, 97, 238, 0.15);
        border-left: 4px solid #4361ee;
    }
    .assistant-message {
        background-color: rgba(58, 12, 163, 0.1);
        border-left: 4px solid #3a0ca3;
    }
    .document-list {
        background-color: rgba(67, 97, 238, 0.05);
        border-radius: 8px;
        padding: 0.7rem;
    }
    .upload-container {
        border: 2px dashed rgba(67, 97, 238, 0.5);
        border-radius: 10px;
        padding: 1rem;
        margin-bottom: 1rem;
        text-align: center;
    }
    .status-indicator {
        font-size: 0.85rem;
        font-weight: 600;
        padding: 0.3rem 0.7rem;
        border-radius: 20px;
        display: inline-block;
        margin-bottom: 0.5rem;
    }
    .status-active {
        background-color: rgba(46, 196, 182, 0.2);
        color: #2EC4B6;
    }
    .status-inactive {
        background-color: rgba(231, 111, 81, 0.2);
        color: #E76F51;
    }
    @media screen and (max-width: 768px) {
        .app-title {
            font-size: 1.8rem;
            padding: 0.7rem;
        }
    }
    </style>
    """, unsafe_allow_html=True)

# --- Page Setup ---
st.set_page_config(
    page_title="RAG-Xpert: An Enhanced RAG Framework",
    page_icon="πŸ“š",
    layout="centered",
    initial_sidebar_state="expanded"
)

apply_custom_css()

st.markdown('<h1 class="app-title">πŸ“š RAG-Xpert: An Enhanced Retrieval-Augmented Generation Framework πŸ€–</h1>', unsafe_allow_html=True)

# --- Session Initialization ---
if "session_id" not in st.session_state:
    st.session_state.session_id = str(uuid.uuid4())
if "rag_sources" not in st.session_state:
    st.session_state.rag_sources = []
if "messages" not in st.session_state:
    st.session_state.messages = [
        {"role": "user", "content": "Hello"},
        {"role": "assistant", "content": "Hi there! How can I assist you today?"}
    ]

# --- Sidebar ---
with st.sidebar:
    st.markdown("""
        <div style="
            text-align: center; 
            padding: 1rem 0; 
            margin-bottom: 1.5rem; 
            background: linear-gradient(to right, #4361ee22, #3a0ca322); 
            border-radius: 10px;">
            <div style="font-size: 0.85rem; color: #888;">Developed By</div>
            <div style="font-size: 1.2rem; font-weight: 700; color: #4361ee;">Uditanshu Pandey</div>
        </div>
    """, unsafe_allow_html=True)

    is_vector_db_loaded = "vector_db" in st.session_state and st.session_state.vector_db is not None
    rag_status = st.toggle("Enable Knowledge Enhancement (RAG)", value=is_vector_db_loaded, key="use_rag", disabled=not is_vector_db_loaded)

    if rag_status:
        st.markdown('<div class="status-indicator status-active">RAG Mode: Active βœ“</div>', unsafe_allow_html=True)
    else:
        st.markdown('<div class="status-indicator status-inactive">RAG Mode: Inactive βœ—</div>', unsafe_allow_html=True)

    st.toggle("Show Retrieved Context", key="debug_mode", value=False)
    st.button("🧹 Clear Chat History", on_click=lambda: st.session_state.messages.clear(), type="primary")

    st.markdown("<h3 style='text-align: center; color: #4361ee; margin-top: 1.5rem;'>πŸ“š Knowledge Sources</h3>", unsafe_allow_html=True)
    st.markdown('<div class="upload-container">', unsafe_allow_html=True)
    st.file_uploader("πŸ“„ Upload Documents", type=["pdf", "txt", "docx", "md"], accept_multiple_files=True, on_change=load_doc_to_db, key="rag_docs")
    st.markdown('</div>', unsafe_allow_html=True)

    st.text_input("🌐 Add Webpage URL", placeholder="https://example.com", on_change=load_url_to_db, key="rag_url")

    doc_count = len(st.session_state.rag_sources) if is_vector_db_loaded else 0
    with st.expander(f"πŸ“‘ Knowledge Base ({doc_count} sources)"):
        if doc_count:
            st.markdown('<div class="document-list">', unsafe_allow_html=True)
            for i, source in enumerate(st.session_state.rag_sources):
                st.markdown(f"**{i+1}.** {source}")
            st.markdown('</div>', unsafe_allow_html=True)
        else:
            st.info("No documents added yet. Upload files or add URLs to enhance the assistant's knowledge.")

# --- Initialize LLM ---
llm_stream = ChatGroq(
    model_name="meta-llama/llama-4-scout-17b-16e-instruct",
    api_key=os.getenv("GROQ_API_KEY"),
    temperature=0.4,
    max_tokens=1024,
)

# --- Chat Display ---
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
for message in st.session_state.messages:
    avatar = "πŸ‘€" if message["role"] == "user" else "πŸ€–"
    css_class = "user-message" if message["role"] == "user" else "assistant-message"
    with st.chat_message(message["role"], avatar=avatar):
        st.markdown(f'<div class="message-container {css_class}">{message["content"]}</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)

# --- User Input Handling ---
if prompt := st.chat_input("Ask me anything..."):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user", avatar="πŸ‘€"):
        st.markdown(f'<div class="message-container user-message">{prompt}</div>', unsafe_allow_html=True)

    with st.chat_message("assistant", avatar="πŸ€–"):
        thinking_placeholder = st.empty()
        thinking_placeholder.info("Thinking... Please wait a moment.")
        messages = [
            HumanMessage(content=m["content"]) if m["role"] == "user" else AIMessage(content=m["content"])
            for m in st.session_state.messages
        ]
        if not st.session_state.use_rag:
            thinking_placeholder.empty()
            st.write_stream(stream_llm_response(llm_stream, messages))
        else:
            thinking_placeholder.info("Searching knowledge base... Please wait.")
            st.write_stream(stream_llm_rag_response(llm_stream, messages))