File size: 6,673 Bytes
a2ac738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import dotenv
from time import time
import streamlit as st

from langchain_community.document_loaders.text import TextLoader
from langchain_community.document_loaders import (
    WebBaseLoader, 
    PyPDFLoader, 
    Docx2txtLoader,
)
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain

dotenv.load_dotenv()

os.environ["USER_AGENT"] = "myagent"
DB_DOCS_LIMIT = 10

# Stream non-RAG LLM response
def stream_llm_response(llm_stream, messages):
    response_message = ""
    for chunk in llm_stream.stream(messages):
        response_message += chunk.content
        yield chunk
    st.session_state.messages.append({"role": "assistant", "content": response_message})

# --- Document Loading and Indexing ---
def load_doc_to_db():
    if "rag_docs" in st.session_state and st.session_state.rag_docs:
        docs = []
        for doc_file in st.session_state.rag_docs:
            if doc_file.name not in st.session_state.rag_sources:
                if len(st.session_state.rag_sources) < DB_DOCS_LIMIT:
                    os.makedirs("source_files", exist_ok=True)
                    file_path = f"./source_files/{doc_file.name}"
                    with open(file_path, "wb") as file:
                        file.write(doc_file.read())
                    try:
                        if doc_file.type == "application/pdf":
                            loader = PyPDFLoader(file_path)
                        elif doc_file.name.endswith(".docx"):
                            loader = Docx2txtLoader(file_path)
                        elif doc_file.type in ["text/plain", "text/markdown"]:
                            loader = TextLoader(file_path)
                        else:
                            st.warning(f"Unsupported document type: {doc_file.type}")
                            continue
                        docs.extend(loader.load())
                        st.session_state.rag_sources.append(doc_file.name)
                    except Exception as e:
                        st.toast(f"Error loading document {doc_file.name}: {e}", icon="⚠️")
                    finally:
                        os.remove(file_path)
                else:
                    st.error(f"Max documents reached ({DB_DOCS_LIMIT}).")
        if docs:
            _split_and_load_docs(docs)
            st.toast(f"Documents loaded successfully.", icon="βœ…")

def load_url_to_db():
    if "rag_url" in st.session_state and st.session_state.rag_url:
        url = st.session_state.rag_url
        docs = []
        if url not in st.session_state.rag_sources:
            if len(st.session_state.rag_sources) < DB_DOCS_LIMIT:
                try:
                    loader = WebBaseLoader(url)
                    docs.extend(loader.load())
                    st.session_state.rag_sources.append(url)
                except Exception as e:
                    st.error(f"Error loading from URL {url}: {e}")
                if docs:
                    _split_and_load_docs(docs)
                    st.toast(f"Loaded content from URL: {url}", icon="βœ…")
            else:
                st.error(f"Max documents reached ({DB_DOCS_LIMIT}).")

def initialize_vector_db(docs):
    # Initialize HuggingFace embeddings
    embedding = HuggingFaceEmbeddings(
        model_name="BAAI/bge-large-en-v1.5",
        model_kwargs={'device': 'cpu'},
        encode_kwargs={'normalize_embeddings': False}
    )

    # Shared persistent directory for long-term storage
    persist_dir = "./chroma_persistent_db"
    collection_name = "persistent_collection"

    # Create the persistent Chroma vector store
    vector_db = Chroma.from_documents(
        documents=docs,
        embedding=embedding,
        persist_directory=persist_dir,
        collection_name=collection_name
    )

    # Persist to disk
    vector_db.persist()

    return vector_db


def _split_and_load_docs(docs):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
    )

    chunks = text_splitter.split_documents(docs)

    if "vector_db" not in st.session_state:
        st.session_state.vector_db = initialize_vector_db(chunks)
    else:
        st.session_state.vector_db.add_documents(chunks)
        st.session_state.vector_db.persist()  # Save changes

# --- RAG Chain ---

def _get_context_retriever_chain(vector_db, llm):
    retriever = vector_db.as_retriever()
    prompt = ChatPromptTemplate.from_messages([
        MessagesPlaceholder(variable_name="messages"),
        ("user", "{input}"),
        ("user", "Given the above conversation, generate a search query to find relevant information.")
    ])
    return create_history_aware_retriever(llm, retriever, prompt)

def get_conversational_rag_chain(llm):
    retriever_chain = _get_context_retriever_chain(st.session_state.vector_db, llm)
    prompt = ChatPromptTemplate.from_messages([
        ("system",
         """You are a helpful assistant answering the user's queries using the provided context if available.\n
         {context}"""),
        MessagesPlaceholder(variable_name="messages"),
        ("user", "{input}")
    ])
    stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
    return create_retrieval_chain(retriever_chain, stuff_documents_chain)

# Stream RAG LLM response
def stream_llm_rag_response(llm_stream, messages):
    rag_chain = get_conversational_rag_chain(llm_stream)

    # Extract latest user input and prior messages
    input_text = messages[-1].content
    history = messages[:-1]

    # --- DEBUG: Show context retrieved ---
    if st.session_state.get("debug_mode"):
        retriever = st.session_state.vector_db.as_retriever()
        retrieved_docs = retriever.get_relevant_documents(input_text)
        st.markdown("### πŸ” Retrieved Context (Debug Mode)")
        for i, doc in enumerate(retrieved_docs):
            st.markdown(f"**Chunk {i+1}:**\n```\n{doc.page_content.strip()}\n```")

    response_message = "*(RAG Response)*\n"
    response = rag_chain.stream({
        "messages": history,
        "input": input_text
    })

    for chunk in response:
        if 'answer' in chunk:
            response_message += chunk['answer']
            yield chunk['answer']

    st.session_state.messages.append({"role": "assistant", "content": response_message})