File size: 3,544 Bytes
4e5eb13
 
 
34660db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948cba3
 
 
4e5eb13
948cba3
 
 
 
34660db
 
 
 
948cba3
 
 
 
 
 
 
 
 
0123b5a
948cba3
 
 
34660db
948cba3
34660db
948cba3
34660db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948cba3
 
34660db
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
import pandas as pd

# Static data
STATIC_DATA = [
    ["VLM", "w/o WM", "–", "RGB", "72B", 50.27, 6.24],
    ["Image Gen.", "PathDreamer [36]", "Viewpoint", "RGB-D; Sem; Pano", "0.69B", 56.99, 5.28],
    ["Image Gen.", "SE3DS [11]", "Viewpoint", "RGB-D; Pano", "1.1B", 57.53, 5.29],
    ["Video Gen.", "NWM [25]", "Trajectory", "RGB", "1B", 57.35, 5.68],
    ["Video Gen.", "SVD [6]", "Image", "RGB", "1.5B", 57.71, 5.29],
    ["Video Gen.", "LTX-Video [5]", "Text", "RGB", "2B", 56.08, 5.37],
    ["Video Gen.", "Hunyuan [4]", "Text", "RGB", "13B", 57.71, 5.21],
    ["Video Gen.", "Wan2.1 [23]", "Text", "RGB", "14B", 58.26, 5.24],
    ["Video Gen.", "Cosmos [1]", "Text", "RGB", "2B", 52.27, 5.898],
    ["Video Gen.", "Runway", "Text", "–", "–", "–", "–"],
    ["Video Gen. Post-Train", "SVD† [6]", "Action", "RGB; Pano", "1.5B", 60.98, 5.02],
    ["Video Gen. Post-Train", "LTX† [5]", "Action", "RGB; Pano", "2B", 57.53, 5.49],
    ["Video Gen. Post-Train", "WAN2.1† [23]", "Action", "RGB; Pano", "14B", "XXX", "XXX"],
    ["Video Gen. Post-Train", "Cosmos† [1]", "Action", "RGB; Pano", "2B", 60.25, 5.08],
]

COLUMNS = ["Model Type", "Method", "Control Type", "Input Type", "#Param.", "Acc. ↑", "Mean Traj. ↓"]

def create_leaderboard():
    df = pd.DataFrame(STATIC_DATA, columns=COLUMNS)
    return df

# Create the Gradio interface
with gr.Blocks(title="World-in-World: Building a Closed-Loop World Interface to Evaluate World Models", theme=gr.themes.Soft()) as demo:
    gr.HTML("<h1 style='text-align: center; margin-bottom: 1rem'>πŸ† World-in-World: Building a Closed-Loop World Interface to Evaluate World Models</h1>")
    
    gr.Markdown("""
    **Performance comparison across vision-language models, image generation, and video generation models.**
    
    πŸ“Š **Metrics:** Acc. ↑ (Accuracy - higher is better) | Mean Traj. ↓ (Mean Trajectory error - lower is better)
    """)
    
    with gr.Tabs():
        with gr.TabItem("πŸ“Š Leaderboard"):
            leaderboard_table = gr.DataFrame(
                value=create_leaderboard(),
                headers=COLUMNS,
                datatype=["str", "str", "str", "str", "str", "number", "number"],
                interactive=False,
                wrap=True
            )
        
        with gr.TabItem("πŸ“ About"):
            gr.Markdown("""
            # World-in-World: Building a Closed-Loop World Interface to Evaluate World Models
            
            This leaderboard showcases performance metrics across different types of AI models in world modeling tasks:
            
            ## Model Categories
            - **VLM**: Vision-Language Models
            - **Image Gen.**: Image Generation Models  
            - **Video Gen.**: Video Generation Models
            - **Video Gen. Post-Train**: Post-training specialized Video Generation Models
            
            ## Metrics Explained
            - **Acc. ↑**: Accuracy score (higher values indicate better performance)
            - **Mean Traj. ↓**: Mean trajectory error (lower values indicate better performance)
            
            ## Notes
            - † indicates post-training specialized models
            - XXX indicates results pending/unavailable
            - – indicates not applicable or not available
            
            *Results represent performance on world modeling evaluation benchmarks and may vary across different evaluation settings.*
            """)

if __name__ == "__main__":
    demo.launch()