|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-llm-7b-chat", device_map="auto", torch_dtype=torch.float16) |
|
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b-chat") |
|
|
|
def chat(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
gr.Interface(fn=chat, inputs="text", outputs="text").launch() |